मराठी

Two Dice Are Thrown Simultaneously. the Probability of Getting a Pair of Aces is (A) 1/36 (B) 1/3 (C) 1/6 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

Two dice are thrown simultaneously. The probability of getting a pair of aces is

पर्याय

  • 1/36

  •  1/3

  • 1/6

  • none of these

     
MCQ

उत्तर

 1/36

When two dice are thrown simultaneously, the sample space associated with the random experiment is given by:
S = {(1, 1), (1, 2), (1, 3) ...(6, 4), (6, 5), (6, 6)}
Clearly, total number of elementary events = 36
Let A be the event of getting a pair of aces.
Then A = {(1, 1)}
∴ n(A) = 1
Hence, required probability = \[\frac{n\left( A \right)}{n\left( S \right)} = \frac{1}{36}\]

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Probability - Exercise 33.6 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 33 Probability
Exercise 33.6 | Q 26 | पृष्ठ ७२

संबंधित प्रश्‍न

If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find

  1. P(E or F)
  2. P(not E and not F).

In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.


In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that

  1. The student opted for NCC or NSS.
  2. The student has opted neither NCC nor NSS.
  3. The student has opted NSS but not NCC.

In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.


Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.


A dice is thrown. Find the probability of getting:

 2 or 4


A dice is thrown. Find the probability of getting a multiple of 2 or 3.

 

In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting  an even number on first


In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other


In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die


Three coins are tossed together. Find the probability of getting at least two heads


Two dice are thrown. Find the odds in favour of getting the sum 4.


Two dice are thrown. Find the odds in favour of getting the sum 5.

 

 


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that  at least one is green?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.35 .... 0.25 0.6

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).


There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.


In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.


100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.


One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are


Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×