मराठी

One of the Two Events Must Occur. If the Chance of One is 2/3 of the Other, Then Odds in Favour of the Other Are (A) 1 : 3 (B) 3 : 1 (C) 2 : 3 (D) 3 : 2 - Mathematics

Advertisements
Advertisements

प्रश्न

One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are

पर्याय

  •  1 : 3

  • 3 : 1

  •  2 : 3

  •  3 : 2

     
MCQ

उत्तर

 3 : 2

Let P(B) = x
Then, P(A) = \[\frac{2x}{3}\]

P(A) + P(B) = \[x + \frac{2x}{3} = \frac{5x}{3}\]

\[\Rightarrow \frac{5x}{3} = 1\]
   (∵ They are exhaustive events)

\[\Rightarrow x = \frac{3}{5}\]

Now,

\[P(A) = \frac{2}{5} and P\left( B \right) = \frac{3}{5}\]
 
∴ Odd in favour of B = \[\frac{3/5}{1 - 3/5} = \frac{3}{2} = 3: 2\]
 
shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 33: Probability - Exercise 33.6 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 33 Probability
Exercise 33.6 | Q 17 | पृष्ठ ७२

संबंधित प्रश्‍न

If `2/11` is the probability of an event, what is the probability of the event ‘not A’.


If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find

  1. P(E or F)
  2. P(not E and not F).

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).


In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that

  1. you both enter the same sections?
  2. you both enter the different sections?

In a simultaneous throw of a pair of dice, find the probability of getting:

8 as the sum


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers


In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9


In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other


In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces


In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die


Three coins are tossed together. Find the probability of getting at least two heads


Three coins are tossed together. Find the probability of getting at least one head and one tail.

 

Two dice are thrown. Find the odds in favour of getting the sum 5.

 

 


Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that  at least one is green?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.


A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.


In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


Find the probability of getting 2 or 3 tails when a coin is tossed four times.

 

A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×