मराठी

In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 - Mathematics

Advertisements
Advertisements

प्रश्न

In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?

बेरीज

उत्तर

Let A and B be the events of passing first and second examinations, respectively.

P(A) = 0.8, P(B) = 0.7

Probability of passing at least one examination

= 1 – P(A’ ∩ B’) = 0.95

⇒ P(A’ ∩ B’) = 1 – 0.95

= 0.05

But A’ ∩ B’ = (A ∪ B)’   ... (By Demorgan’s Law)

∴ P(A’ ∩ B’) = P(A ∪ B)’ = 1 – P(A ∪ B)

= 0.05

∴ P(A ∪ B) = 1 – 0.05

= 0.95

Now P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

0.95 = 0.8 + 0.7 – P(A ∩ B)

P(A ∩ B) = 1.5 – 0.95

= 0.55

Thus, the probability of passing both the examinations = 0.55

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Probability - Exercise 16.3 [पृष्ठ ४०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 16 Probability
Exercise 16.3 | Q 19 | पृष्ठ ४०५

संबंधित प्रश्‍न

If `2/11` is the probability of an event, what is the probability of the event ‘not A’.


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).


In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that

  1. The student opted for NCC or NSS.
  2. The student has opted neither NCC nor NSS.
  3. The student has opted NSS but not NCC.

A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine

  1. P(2)
  2. P(1 or 3)
  3. P(not 3)

A dice is thrown. Find the probability of getting a prime number


A dice is thrown. Find the probability of getting:

 2 or 4


In a simultaneous throw of a pair of dice, find the probability of getting:

8 as the sum


In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers


In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7


In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die


In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11


In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.

 

In a single throw of three dice, find the probability of getting a total of 17 or 18.

 

Three coins are tossed together. Find the probability of getting exactly two heads


Two dice are thrown. Find the odds in favour of getting the sum 4.


Two dice are thrown. Find the odds in favour of getting the sum 5.

 

 


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).

 


There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


If the probability of A to fail in an examination is \[\frac{1}{5}\]  and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is

 
 

A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×