Advertisements
Advertisements
Question
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
Solution
Let A and B be the events of passing first and second examinations, respectively.
P(A) = 0.8, P(B) = 0.7
Probability of passing at least one examination
= 1 – P(A’ ∩ B’) = 0.95
⇒ P(A’ ∩ B’) = 1 – 0.95
= 0.05
But A’ ∩ B’ = (A ∪ B)’ ... (By Demorgan’s Law)
∴ P(A’ ∩ B’) = P(A ∪ B)’ = 1 – P(A ∪ B)
= 0.05
∴ P(A ∪ B) = 1 – 0.05
= 0.95
Now P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
0.95 = 0.8 + 0.7 – P(A ∩ B)
P(A ∩ B) = 1.5 – 0.95
= 0.55
Thus, the probability of passing both the examinations = 0.55
APPEARS IN
RELATED QUESTIONS
If `2/11` is the probability of an event, what is the probability of the event ‘not A’.
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).
A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine
- P(2)
- P(1 or 3)
- P(not 3)
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that
- you both enter the same sections?
- you both enter the different sections?
A dice is thrown. Find the probability of getting a prime number
A dice is thrown. Find the probability of getting:
2 or 4
A dice is thrown. Find the probability of getting a multiple of 2 or 3.
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers
In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9
In a simultaneous throw of a pair of dice, find the probability of getting an even number on first
In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6
In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.
Three coins are tossed together. Find the probability of getting at least one head and one tail.
Two dice are thrown. Find the odds in favour of getting the sum 4.
What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that at least one is green?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
\[\frac{1}{3}\] | \[\frac{1}{5}\] | \[\frac{1}{15}\] | ...... |
If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).
A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.