English

Three Coins Are Tossed Together. Find the Probability of Getting:(Iii) at Least One Head and One Tail. - Mathematics

Advertisements
Advertisements

Question

Three coins are tossed together. Find the probability of getting at least one head and one tail.

 

Solution

When three coins are tossed once, the sample space is given by
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
i.e. (S) = 8

Let E3 = event of getting at least one head and one tail
Then E3 = {HHT, HTH, HTT, THH, THT, TTH}
i.e. n(E3) = 6

\[\therefore P\left( E_3 \right) = \frac{n\left( E_3 \right)}{n\left( S \right)} = \frac{6}{8} = \frac{3}{4}\]

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.3 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.3 | Q 4.3 | Page 46

RELATED QUESTIONS

If `2/11` is the probability of an event, what is the probability of the event ‘not A’.


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?


A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine

  1. P(2)
  2. P(1 or 3)
  3. P(not 3)

In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.


A dice is thrown. Find the probability of getting a prime number


In a simultaneous throw of a pair of dice, find the probability of getting:

8 as the sum


In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6


In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7


In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die


Three coins are tossed together. Find the probability of getting at least two heads


Two dice are thrown. Find the odds in favour of getting the sum 4.


Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).


There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.


A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.


The probability that a leap year will have 53 Fridays or 53 Saturdays is


A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


A box contains  10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is


Three integers are chosen at random from the first 20 integers. The probability that their product is even is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×