Advertisements
Advertisements
Question
In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7
Solution
We know that in a single throw of two dices, the total number of possible outcomes is (6 × 6) = 36.
Let S be the sample space.
Then n(S) = 36
Let E10 = event of getting a sum less than 7
Then E10 = {(1, 1) , (1, 2), (1, 3), (1, 4), (1, 5), (2, 1) , (2, 2), (2, 3), (2, 4), (3, 1) , (3, 2), (3, 3), (4, 1) , (4, 2), (5, 1)}
i.e. n (E10) = 15
\[\therefore P\left( E_{10} \right) = \frac{n\left( E_{10} \right)}{n\left( S \right)} = \frac{15}{36} = \frac{5}{12}\]
APPEARS IN
RELATED QUESTIONS
If `2/11` is the probability of an event, what is the probability of the event ‘not A’.
If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find
- P(E or F)
- P(not E and not F).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?
A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine
- P(2)
- P(1 or 3)
- P(not 3)
In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.
A dice is thrown. Find the probability of getting a prime number
In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9
In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7
In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10
In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second
In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.
In a single throw of three dice, find the probability of getting a total of 17 or 18.
What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .
If A and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).
If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).
If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).
There are three events A, B, C one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C
One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
Find the probability of getting 2 or 3 tails when a coin is tossed four times.
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.