Advertisements
Advertisements
Question
In a single throw of three dice, find the probability of getting a total of 17 or 18.
Solution
If three dices are thrown simultaneously, then all the possible outcomes = 63 = 216
∴ Total number of possible outcome, n(S) = 216
Let A = event of getting a sum of numbers on three dice as 17 or 18
Then the favourable outcomes are given as
A = {(6, 6, 5), (6, 5, 6), (5, 6, 6), (6, 6, 6)}
Number of favourable outcomes, n(A) = 4
Hence, required probability, P(A) = P (sum of the numbers on three dices as 17 or 18) = \[\frac{4}{216} = \frac{1}{54}\]
APPEARS IN
RELATED QUESTIONS
If `2/11` is the probability of an event, what is the probability of the event ‘not A’.
A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is
- a vowel
- an consonant
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?
In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that
- The student opted for NCC or NSS.
- The student has opted neither NCC nor NSS.
- The student has opted NSS but not NCC.
In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.
A dice is thrown. Find the probability of getting a prime number
In a simultaneous throw of a pair of dice, find the probability of getting:
8 as the sum
In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9
In a simultaneous throw of a pair of dice, find the probability of getting an even number on first
In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other
In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7
In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10
In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second
In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die
In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11
In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.
Three coins are tossed together. Find the probability of getting exactly two heads
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
\[\frac{1}{3}\] | \[\frac{1}{5}\] | \[\frac{1}{15}\] | ...... |
If A and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).
One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.
A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.