Advertisements
Advertisements
Question
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
Options
1/3
1/4
5/12
2/3
Solution
2/3
Out of 12 balls, one ball can be drawn in 12C1 ways.
∴ Total number of elementary events = 12C1 = 12
Out of fivne black balls, one black ball can be chosen in 5C1 = 5 ways.
Out of three red balls, one red ball can be chosen in 3C1 = 3 ways.
∴ Favourable number of events = 5 + 3 = 8
Hence, required probability = \[\frac{8}{12} = \frac{2}{3}\]
APPEARS IN
RELATED QUESTIONS
If `2/11` is the probability of an event, what is the probability of the event ‘not A’.
A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is
- a vowel
- an consonant
If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find
- P(E or F)
- P(not E and not F).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that
- The student opted for NCC or NSS.
- The student has opted neither NCC nor NSS.
- The student has opted NSS but not NCC.
In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.
Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.
A dice is thrown. Find the probability of getting:
2 or 4
In a simultaneous throw of a pair of dice, find the probability of getting a doublet
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6
In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second
In a single throw of three dice, find the probability of getting a total of 17 or 18.
Three coins are tossed together. Find the probability of getting exactly two heads
Two dice are thrown. Find the odds in favour of getting the sum 4.
Two dice are thrown. Find the odds in favour of getting the sum 5.
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
\[\frac{1}{3}\] | \[\frac{1}{5}\] | \[\frac{1}{15}\] | ...... |
If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).
There are three events A, B, C one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C
One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.
In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.
The probability that a leap year will have 53 Fridays or 53 Saturdays is
A box contains 10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.