English

Ive Persons Entered the Lift Cabin on the Ground Floor of an 8 Floor House. Suppose that Each of Them Independently and with Equal Probability Can Leave the Cabin at Any Floor Beginning with the First - Mathematics

Advertisements
Advertisements

Question

Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is

Options

  •  \[\frac{^{7}{}{P}_5}{7^5}\]

     

  • \[\frac{7^5}{^{7}{}{P}_5}\]

     

  •  \[\frac{6}{^{6}{}{P}_5}\]

     

  •  \[\frac{^{5}{}{P}_5}{5^5}\]

     

MCQ

Solution

 \[\frac{^{7}{}{P}_5}{7^5}\]

Since, it is an eight-storey building.
So, there are 7 possible options for them in 7 floors in total if ground floor is not considered.
Hence, total possible outcomes = 7× 7× 7 × 7 × 7= 75
Thus, number of ways in which 5 persons can leave from seven floors differently = 7P5
∴ Required probability = \[\frac{^{7}{}{P}_5}{7^5}\]

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.6 [Page 72]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.6 | Q 28 | Page 72

RELATED QUESTIONS

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).


In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.


The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that

  1. you both enter the same sections?
  2. you both enter the different sections?

A dice is thrown. Find the probability of getting a multiple of 2 or 3.

 

In a simultaneous throw of a pair of dice, find the probability of getting:

8 as the sum


In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10


In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.

 

In a single throw of three dice, find the probability of getting a total of 17 or 18.

 

Three coins are tossed together. Find the probability of getting exactly two heads


Three coins are tossed together. Find the probability of getting at least one head and one tail.

 

Two dice are thrown. Find the odds in favour of getting the sum 4.


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that  at least one is green?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).


If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).

 


One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.


A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.


The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?


100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.


One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are


A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


If the probability of A to fail in an examination is \[\frac{1}{5}\]  and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is

 
 

Three integers are chosen at random from the first 20 integers. The probability that their product is even is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×