English

A Person Write 4 Letters and Addresses 4 Envelopes. If the Letters Are Placed in the Envelopes at Random, Then Probability that All Letters Are Not Placed in the Right Envelopes, is (A) 1/4 (B) 11/24 - Mathematics

Advertisements
Advertisements

Question

A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is

Options

  • 1/4

  • 11/24

  •  15/24

  • 23/24

     
MCQ

Solution

\[\frac{23}{24}\] Total number of ways of placing four letters in 4 envelops = 4! = 24
All the letters can be dispatched in the right envelops in only one way. Therefore, the probability that all the letters are placed in the right envelops is \[\frac{1}{24}\] . 

Hence, probability that all the letters are not placed in the right envelops = \[1 - \frac{1}{24} = \frac{23}{24}\]

 

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.6 [Page 72]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.6 | Q 19 | Page 72

RELATED QUESTIONS

If `2/11` is the probability of an event, what is the probability of the event ‘not A’.


If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find

  1. P(E or F)
  2. P(not E and not F).

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)


A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine

  1. P(2)
  2. P(1 or 3)
  3. P(not 3)

Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.


In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers


In a simultaneous throw of a pair of dice, find the probability of getting  an even number on first


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6


In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11


Three coins are tossed together. Find the probability of getting exactly two heads


Three coins are tossed together. Find the probability of getting at least two heads


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.35 .... 0.25 0.6

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).

 


A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.


In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.


The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?


100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


Find the probability of getting 2 or 3 tails when a coin is tossed four times.

 

The probability that a leap year will have 53 Fridays or 53 Saturdays is


If the probability of A to fail in an examination is \[\frac{1}{5}\]  and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is

 
 

Three integers are chosen at random from the first 20 integers. The probability that their product is even is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×