Advertisements
Advertisements
प्रश्न
A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is
पर्याय
1/4
11/24
15/24
23/24
उत्तर
\[\frac{23}{24}\] Total number of ways of placing four letters in 4 envelops = 4! = 24
All the letters can be dispatched in the right envelops in only one way. Therefore, the probability that all the letters are placed in the right envelops is \[\frac{1}{24}\] .
Hence, probability that all the letters are not placed in the right envelops = \[1 - \frac{1}{24} = \frac{23}{24}\]
APPEARS IN
संबंधित प्रश्न
If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find
- P(E or F)
- P(not E and not F).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?
A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine
- P(2)
- P(1 or 3)
- P(not 3)
In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.
Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.
In a simultaneous throw of a pair of dice, find the probability of getting:
8 as the sum
In a simultaneous throw of a pair of dice, find the probability of getting a doublet
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers
In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6
In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7
In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10
Three coins are tossed together. Find the probability of getting at least two heads
Three coins are tossed together. Find the probability of getting at least one head and one tail.
Two dice are thrown. Find the odds in favour of getting the sum 5.
Two dice are thrown. Find the odds in favour of getting the sum What are the odds against getting the sum 6?
What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
0.5 | 0.35 | ..... | 0.7 |
If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).
There are three events A, B, C one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C
One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.
A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
The probability that a leap year will have 53 Fridays or 53 Saturdays is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.