Advertisements
Advertisements
प्रश्न
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is
पर्याय
- \[\frac{186}{190}\]
- \[\frac{187}{190}\]
- \[\frac{188}{190}\]
- \[\frac{18}{^{20}{}{C}_3}\]
उत्तर
Number of ways to choose three numbers from 1 to 20 = \[^{20}{}{C}_3\] = 1140
Now, the set of three consecutive numbers from 1 to 20 are (1, 2, 3), (2, 3, 4), (3, 4, 5), ...., (18, 19, 20).
So, the number of ways to choose three numbers from 1 to 20 such that they are consecutive is 18.
P(three numbers choosen are consecutive) =\[\frac{\text{ Number of ways to choose three consecutive numbers from 1 to 20} }{\text{ Number of ways to choose three numbers from 1 to 20} } = \frac{18}{^{20}{}{C}_3} = \frac{18}{1140} = \frac{3}{190}\]
∴ P(three numbers choosen are not consecutive) = 1 − P(three numbers choosen are consecutive) = \[1 - \frac{3}{190} = \frac{187}{190}\]
APPEARS IN
संबंधित प्रश्न
If `2/11` is the probability of an event, what is the probability of the event ‘not A’.
A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is
- a vowel
- an consonant
If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find
- P(E or F)
- P(not E and not F).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?
In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that
- The student opted for NCC or NSS.
- The student has opted neither NCC nor NSS.
- The student has opted NSS but not NCC.
A dice is thrown. Find the probability of getting a multiple of 2 or 3.
In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7
In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10
Three coins are tossed together. Find the probability of getting exactly two heads
Three coins are tossed together. Find the probability of getting at least one head and one tail.
Two dice are thrown. Find the odds in favour of getting the sum 4.
Two dice are thrown. Find the odds in favour of getting the sum 5.
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
0.35 | .... | 0.25 | 0.6 |
If A and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).
One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.
A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.
100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
If the probability of A to fail in an examination is \[\frac{1}{5}\] and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.