हिंदी

Three Numbers Are Chosen from 1 to 20. the Probability that They Are Not Consecutive is - Mathematics

Advertisements
Advertisements

प्रश्न

Three numbers are chosen from 1 to 20. The probability that they are not consecutive is

विकल्प

  • \[\frac{186}{190}\]

     

  • \[\frac{187}{190}\]

     

  • \[\frac{188}{190}\]

     

  • \[\frac{18}{^{20}{}{C}_3}\]

     

MCQ

उत्तर

Number of ways to choose three numbers from 1 to 20 = \[^{20}{}{C}_3\] = 1140

Now, the set of three consecutive numbers from 1 to 20 are (1, 2, 3), (2, 3, 4), (3, 4, 5), ...., (18, 19, 20).
So, the number of ways to choose three numbers from 1 to 20 such that they are consecutive is 18.
P(three numbers choosen are consecutive) =\[\frac{\text{ Number of ways to choose three consecutive numbers from 1 to 20} }{\text{ Number of ways to choose three numbers from 1 to 20} } = \frac{18}{^{20}{}{C}_3} = \frac{18}{1140} = \frac{3}{190}\]

∴ P(three numbers choosen are not consecutive) = 1 − P(three numbers choosen are consecutive) = \[1 - \frac{3}{190} = \frac{187}{190}\]

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.6 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.6 | Q 36 | पृष्ठ ७३

संबंधित प्रश्न

A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is

  1. a vowel
  2. an consonant

If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find

  1. P(E or F)
  2. P(not E and not F).

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).


In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.


The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?


In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that

  1. The student opted for NCC or NSS.
  2. The student has opted neither NCC nor NSS.
  3. The student has opted NSS but not NCC.

Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.


A dice is thrown. Find the probability of getting a multiple of 2 or 3.

 

In a simultaneous throw of a pair of dice, find the probability of getting:

8 as the sum


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die


In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.

 

Three coins are tossed together. Find the probability of getting exactly two heads


Three coins are tossed together. Find the probability of getting at least two heads


Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.35 .... 0.25 0.6

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


Find the probability of getting 2 or 3 tails when a coin is tossed four times.

 

One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are


The probability that a leap year will have 53 Fridays or 53 Saturdays is


A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×