Advertisements
Advertisements
Question
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is
Options
- \[\frac{186}{190}\]
- \[\frac{187}{190}\]
- \[\frac{188}{190}\]
- \[\frac{18}{^{20}{}{C}_3}\]
Solution
Number of ways to choose three numbers from 1 to 20 = \[^{20}{}{C}_3\] = 1140
Now, the set of three consecutive numbers from 1 to 20 are (1, 2, 3), (2, 3, 4), (3, 4, 5), ...., (18, 19, 20).
So, the number of ways to choose three numbers from 1 to 20 such that they are consecutive is 18.
P(three numbers choosen are consecutive) =\[\frac{\text{ Number of ways to choose three consecutive numbers from 1 to 20} }{\text{ Number of ways to choose three numbers from 1 to 20} } = \frac{18}{^{20}{}{C}_3} = \frac{18}{1140} = \frac{3}{190}\]
∴ P(three numbers choosen are not consecutive) = 1 − P(three numbers choosen are consecutive) = \[1 - \frac{3}{190} = \frac{187}{190}\]
APPEARS IN
RELATED QUESTIONS
A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is
- a vowel
- an consonant
If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find
- P(E or F)
- P(not E and not F).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).
In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that
- The student opted for NCC or NSS.
- The student has opted neither NCC nor NSS.
- The student has opted NSS but not NCC.
In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.
A dice is thrown. Find the probability of getting a prime number
A dice is thrown. Find the probability of getting a multiple of 2 or 3.
In a simultaneous throw of a pair of dice, find the probability of getting a doublet
In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9
In a simultaneous throw of a pair of dice, find the probability of getting an even number on first
In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces
In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7
In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10
In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second
In a single throw of three dice, find the probability of getting a total of 17 or 18.
Three coins are tossed together. Find the probability of getting at least two heads
Two dice are thrown. Find the odds in favour of getting the sum 4.
Two dice are thrown. Find the odds in favour of getting the sum 5.
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
0.35 | .... | 0.25 | 0.6 |
A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.
100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
If the probability of A to fail in an examination is \[\frac{1}{5}\] and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is
A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is