Advertisements
Advertisements
Question
In a simultaneous throw of a pair of dice, find the probability of getting a doublet
Solution
We know that in a single throw of two dices, the total number of possible outcomes is (6 × 6) = 36.
Let S be the sample space.
Then n(S) = 36Let E2 = event of getting a doublet
Then E2 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
i.e. n (E2) = 6
\[\therefore P\left( E_2 \right) = \frac{n\left( E_2 \right)}{n\left( S \right)} = \frac{6}{36} = \frac{1}{6}\]
APPEARS IN
RELATED QUESTIONS
If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find
- P(E or F)
- P(not E and not F).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine
- P(2)
- P(1 or 3)
- P(not 3)
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that
- you both enter the same sections?
- you both enter the different sections?
Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.
A dice is thrown. Find the probability of getting a multiple of 2 or 3.
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers
In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9
In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10
In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.
In a single throw of three dice, find the probability of getting a total of 17 or 18.
Three coins are tossed together. Find the probability of getting at least two heads
Two dice are thrown. Find the odds in favour of getting the sum 4.
Two dice are thrown. Find the odds in favour of getting the sum 5.
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that at least one is green?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
0.5 | 0.35 | ..... | 0.7 |
If A and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).
If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).
If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).
In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.
A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.
If the probability of A to fail in an examination is \[\frac{1}{5}\] and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is
One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.