Advertisements
Advertisements
Question
One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is
Options
\[\frac{1}{n^n}\]
\[\frac{1}{n!}\]
\[\frac{\left( n - 1 \right)!}{n^{n - 1}}\]
None of these
Solution
Number of ways to map 1st element in set A = n
Number of ways to map 2nd element in set A = n and so on
∴ Total number of mapping from set A to itself = \[n \times n \times . . . \times n\] (n times) = \[n^n\]
For one to one mapping,
Number of ways to map 1st element in set A = n
Number of ways to map 2nd element in set A = n −1
Number of ways to map 3rd element in set A = n − 2
. . . . . . . .
. . . . . . . .
Number of ways to map nth element in set A = 1
Total number of one to one mappings from set A to itself = \[n \times \left( n - 1 \right) \times \left( n - 2 \right) \times . . . \times 1 = n!\]
∴ Required probability = \[= \frac{\text{ Total number of one to one mappings from set A to it self } }{\text{ Total number of mappings from set A to it self} } = \frac{n!}{n^n} = \frac{\left( n - 1 \right)!}{n^{n - 1}}\]
APPEARS IN
RELATED QUESTIONS
A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is
- a vowel
- an consonant
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that
- you both enter the same sections?
- you both enter the different sections?
Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.
A dice is thrown. Find the probability of getting a multiple of 2 or 3.
In a simultaneous throw of a pair of dice, find the probability of getting:
8 as the sum
In a simultaneous throw of a pair of dice, find the probability of getting an even number on first
In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6
In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second
In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die
In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11
Three coins are tossed together. Find the probability of getting at least two heads
Two dice are thrown. Find the odds in favour of getting the sum 4.
Two dice are thrown. Find the odds in favour of getting the sum 5.
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that at least one is green?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
\[\frac{1}{3}\] | \[\frac{1}{5}\] | \[\frac{1}{15}\] | ...... |
A card is drawn from a deck of 52 cards. Find the probability of getting an ace or a spade card.
100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.
If the probability of A to fail in an examination is \[\frac{1}{5}\] and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is
A box contains 10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.