Advertisements
Advertisements
Question
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that
- you both enter the same sections?
- you both enter the different sections?
Solution
Let there be two sections A and B having 40 and 60 students, respectively.
a. i. Suppose both the students belong to section A.
∴ 38 students are selected out of 98 students.
Ways to select 38 students from 98 = 98C38
Ways to select 40 students from 100, without any condition n(S) = 100C40
Probability that both students (he and his friend) get admission in the same section A
= `(""^98C_38)/(""^100C_40)`
= `(98!)/(38!60!) xx (40!60!)/(100!)`
= `(98! xx 40! xx 60!)/(38!60! xx 100.99(98!))`
= `(40.39)/(100 xx 99)`
= `26/165`
ii. If both students get admission in section B. Then number of ways to select 58 students from 98 = 98C58
number of ways to select 60 students from 100 = 100C60
So, if those students get admission in section B then the probability is
= `""^98C_58 ÷ ""^100C_60`
= `(98!)/(58!40!) ÷ (100!)/(60!40!)`
= `(98!)/(58!40!) xx (60 xx 59 xx (58!) xx (40!))/(100 xx 99 xx 98!)`
= `(60.59)/(100.99)`
= `59/(5 xx 33)`
= `59/165`
Both the students get admission in section A or B Then his probability
= `26/165 + 59/165`
= `85/165`
= `17/33`
b. Probability of both students getting admission in different sections
= `1 - 17/33`
= `(33 - 17)/33`
= `16/33`
APPEARS IN
RELATED QUESTIONS
If `2/11` is the probability of an event, what is the probability of the event ‘not A’.
If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find
- P(E or F)
- P(not E and not F).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?
In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers
In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7
In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.
Three coins are tossed together. Find the probability of getting at least two heads
Three coins are tossed together. Find the probability of getting at least one head and one tail.
Two dice are thrown. Find the odds in favour of getting the sum 5.
Two dice are thrown. Find the odds in favour of getting the sum What are the odds against getting the sum 6?
What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that at least one is green?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
0.35 | .... | 0.25 | 0.6 |
If A and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).
If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).
There are three events A, B, C one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C
A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is
If the probability of A to fail in an examination is \[\frac{1}{5}\] and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is
A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is
One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.