English

The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. - Mathematics

Advertisements
Advertisements

Question

The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?

Sum

Solution

Let A and B be the events of passing English and Hindi examinations, respectively.

Accordingly, we have:

P(A and B) = 0.5

 P(not A and not B) = 0.1 [i.e. P(A' ∩ B') = 0.1]

P(A) = 0.75

Now, P(A∪B) + P(A' ∩ B') = 1

⇒ P(A∪B) = 1 - P(A' ∩ B')

                  = 1 -0.1 = 0.9

By addition theorem, we have:

P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

⇒ 0.9 = 0.75 + P (B)  - 0.5

⇒ P(B) = 0.9 - 0.75 + 0.5

⇒ P(B) = 0.65

Thus, the probability of passing the Hindi examination is 0.65.

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.4 [Page 68]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.4 | Q 13 | Page 68

RELATED QUESTIONS

A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is

  1. a vowel
  2. an consonant

If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find

  1. P(E or F)
  2. P(not E and not F).

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).


In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that

  1. The student opted for NCC or NSS.
  2. The student has opted neither NCC nor NSS.
  3. The student has opted NSS but not NCC.

A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine

  1. P(2)
  2. P(1 or 3)
  3. P(not 3)

In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9


In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.

 

Three coins are tossed together. Find the probability of getting exactly two heads


Three coins are tossed together. Find the probability of getting at least one head and one tail.

 

Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?

 

A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.35 .... 0.25 0.6

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.


In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.


The probability that a leap year will have 53 Fridays or 53 Saturdays is


A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


A box contains  10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


Three numbers are chosen from 1 to 20. The probability that they are not consecutive is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×