English

A Box Contains 6 Red Marbles Numbered 1 Through 6 and 4 White Marbles Numbered from 12 Through 15. Find the Probability that a Marble Drawn is Red Or Even Numbered. - Mathematics

Advertisements
Advertisements

Question

A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.

Solution

Total number of marbles = (6 + 4) = 10
Let S be the sample space.
Then n(S) = number of ways of selecting one marble out of 10 = 10C1 = 10 ways

Let E4 = event of getting a red marble
i.e. E4 = {1, 2, 3, 4, 5, 6}
∴ n(E4) = 6
Now, P(E4) =\[\frac{6}{10} = \frac{3}{5}\]    ................(i) 

Let E5 = event of getting even numbered marble
Then E5 = {2, 4, 6, 12, 14}
i.e.n(E5) = 5
Now, P(E5) = \[\frac{5}{10} = \frac{1}{2}\]

From (i) and (ii), we get:
E4 ∩ E5 = {2, 4, 6}

\[\Rightarrow\] n(E4 ∩ E5) = 3
 
\[\Rightarrow\]  P(E4 ∩ E5) = \[\frac{3}{10}\]
By addition theorem, we have:
P (E4 ∪ E5) = P(E4) + P (E5) − P (E4 ∩ E5)
⇒ P (E4 ∪ E5) =
\[\frac{3}{5} + \frac{1}{2} - \frac{3}{10} = \frac{8}{10} = \frac{4}{5}\] 
Hence, required probability = P(E4 ∪ E5) = \[\frac{4}{5}\]
 
 

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.3 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.3 | Q 37.4 | Page 47

RELATED QUESTIONS

A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is

  1. a vowel
  2. an consonant

If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find

  1. P(E or F)
  2. P(not E and not F).

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).


In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.


Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.


A dice is thrown. Find the probability of getting a prime number


A dice is thrown. Find the probability of getting a multiple of 2 or 3.

 

In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers


In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9


In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces


In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7


In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10


Two dice are thrown. Find the odds in favour of getting the sum 4.


What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?

 

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.35 .... 0.25 0.6

If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).


There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


If the probability of A to fail in an examination is \[\frac{1}{5}\]  and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is

 
 

A box contains  10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


Three numbers are chosen from 1 to 20. The probability that they are not consecutive is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×