English

Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. - Mathematics

Advertisements
Advertisements

Question

Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.

Sum

Solution

Let the envelopes be denoted as A, B, C and the corresponding letters as a, b, c respectively.

(i) Ways of putting one letter in its proper envelope and the other two in the wrong envelopes

(Aa, Bc, Cb), (Ac, Bb, Ca), (Ab, Ba, Cc)

(ii) If two letters are put in the proper (correct) envelopes, then the third will also be in the proper (correct) envelope.

(iii) There is a way to put all the three letters in their proper (correct) envelopes (Aa, Bb, Cc).

Ways of putting letters in at least one proper envelope

3 + 1

= 4

Total ways of putting three letters in three envelopes = 3! = 6

∴ Probability of putting at least one letter in proper envelope = `4/6 = 2/3`

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  Is there an error in this question or solution?
Chapter 16: Probability - Miscellaneous Exercise [Page 409]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 16 Probability
Miscellaneous Exercise | Q 6 | Page 409

RELATED QUESTIONS

If `2/11` is the probability of an event, what is the probability of the event ‘not A’.


A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is

  1. a vowel
  2. an consonant

If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find

  1. P(E or F)
  2. P(not E and not F).

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)


In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that

  1. you both enter the same sections?
  2. you both enter the different sections?

In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers


In a simultaneous throw of a pair of dice, find the probability of getting  an even number on first


In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7


In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die


In a single throw of three dice, find the probability of getting a total of 17 or 18.

 

Two dice are thrown. Find the odds in favour of getting the sum 5.

 

 


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).


If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).

 


There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.


The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English Examination is 0.75. What is the probability of passing the Hindi Examination?


100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are


A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×