English

There Are Three Events A, B, C One of Which Must and Only One Can Happen, the Odds Are 8 to 3 Against A, 5 to 2 Against B, Find the Odds Against C - Mathematics

Advertisements
Advertisements

Question

There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C

Solution

Since the odds against event A are 8 : 3, the probability of the happening of event A is given by
P(A) = \[\frac{3}{8 + 3} = \frac{3}{11}\]

Similarly, the odds against event B are 5 : 2.
So, P(B) = \[\frac{2}{5 + 2} = \frac{2}{7}\]

Since events A, B and C are such that one of them must and only one can happen, A, B and C are mutually exclusive and totally exhaustive events.
Consequently, A ∪ B ∪ C = S
and A ∩ B = B ∩ C = C ∩ A = Φ
Thus, P (A ∪ B ∪ C) = P(S) = 1
⇒ P(A) + P(B) + P(C) = 1
⇒\[\frac{3}{11} + \frac{2}{7} + P\left( C \right) = 1\]

\[\Rightarrow P\left( C \right) = 1 - \frac{3}{11} - \frac{2}{7} = \frac{34}{77}\]
Hence, odds against the events are
 
\[P\left( \bar{C} \right): P\left( C \right) = \left( 1 - \frac{34}{77} \right): \frac{34}{77}\] 

                          = (77-34) : 34
                          = 43 : 34

 
shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  Is there an error in this question or solution?
Chapter 33: Probability - Exercise 33.4 [Page 68]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 33 Probability
Exercise 33.4 | Q 6 | Page 68

RELATED QUESTIONS

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)


A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).


The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?


In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that

  1. The student opted for NCC or NSS.
  2. The student has opted neither NCC nor NSS.
  3. The student has opted NSS but not NCC.

A dice is thrown. Find the probability of getting:

 2 or 4


In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers


In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7


In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11


In a single throw of three dice, find the probability of getting a total of 17 or 18.

 

Three coins are tossed together. Find the probability of getting exactly two heads


Three coins are tossed together. Find the probability of getting at least two heads


Two dice are thrown. Find the odds in favour of getting the sum 4.


Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.35 .... 0.25 0.6

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.


In a single throw of two dice, find the probability that neither a doublet nor a total of 9 will appear.


100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.


The probability that a leap year will have 53 Fridays or 53 Saturdays is


If the probability of A to fail in an examination is \[\frac{1}{5}\]  and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is

 
 

Three integers are chosen at random from the first 20 integers. The probability that their product is even is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×