English

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B). - Mathematics

Advertisements
Advertisements

Question

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).

Sum

Solution

P(A) = 0.42, P(B) = 0.48

P(A and B) = P(A ∩ B) = 0.16 

P(A or B) = P (A ∪ B) = P(A) + P(B) – P(A ∩ B)

= 0.42 + 0.48 – 0.16

= 0.90 – 0.16

= 0.74

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise 16.3 [Page 405]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 16 Probability
Exercise 16.3 | Q 17.3 | Page 405

RELATED QUESTIONS

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).


In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that

  1. The student opted for NCC or NSS.
  2. The student has opted neither NCC nor NSS.
  3. The student has opted NSS but not NCC.

A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine

  1. P(2)
  2. P(1 or 3)
  3. P(not 3)

A dice is thrown. Find the probability of getting:

 2 or 4


A dice is thrown. Find the probability of getting a multiple of 2 or 3.

 

In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers


In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9


In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6


In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7


In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second


In a single throw of three dice, find the probability of getting a total of 17 or 18.

 

Three coins are tossed together. Find the probability of getting exactly two heads


Three coins are tossed together. Find the probability of getting at least two heads


What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?

 

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that  at least one is green?


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
\[\frac{1}{3}\] \[\frac{1}{5}\] \[\frac{1}{15}\] ......

Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


There are three events ABC one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


Find the probability of getting 2 or 3 tails when a coin is tossed four times.

 

A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


A box contains  10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is


Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


Three numbers are chosen from 1 to 20. The probability that they are not consecutive is


In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy 10 tickets.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×