हिंदी

A Box Contains 6 Red Marbles Numbered 1 Through 6 and 4 White Marbles Numbered from 12 Through 15. Find the Probability that a Marble Drawn is Red Or Even Numbered. - Mathematics

Advertisements
Advertisements

प्रश्न

A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.

उत्तर

Total number of marbles = (6 + 4) = 10
Let S be the sample space.
Then n(S) = number of ways of selecting one marble out of 10 = 10C1 = 10 ways

Let E4 = event of getting a red marble
i.e. E4 = {1, 2, 3, 4, 5, 6}
∴ n(E4) = 6
Now, P(E4) =\[\frac{6}{10} = \frac{3}{5}\]    ................(i) 

Let E5 = event of getting even numbered marble
Then E5 = {2, 4, 6, 12, 14}
i.e.n(E5) = 5
Now, P(E5) = \[\frac{5}{10} = \frac{1}{2}\]

From (i) and (ii), we get:
E4 ∩ E5 = {2, 4, 6}

\[\Rightarrow\] n(E4 ∩ E5) = 3
 
\[\Rightarrow\]  P(E4 ∩ E5) = \[\frac{3}{10}\]
By addition theorem, we have:
P (E4 ∪ E5) = P(E4) + P (E5) − P (E4 ∩ E5)
⇒ P (E4 ∪ E5) =
\[\frac{3}{5} + \frac{1}{2} - \frac{3}{10} = \frac{8}{10} = \frac{4}{5}\] 
Hence, required probability = P(E4 ∪ E5) = \[\frac{4}{5}\]
 
 

 

shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.3 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.3 | Q 37.4 | पृष्ठ ४७

संबंधित प्रश्न

A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is

  1. a vowel
  2. an consonant

If E and F are events such that P(E) = `1/4`, P(F) = `1/2` and P(E and F) = `1/8`, find

  1. P(E or F)
  2. P(not E and not F).

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(A or B).


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


A die has two faces each with number ‘1’, three faces each with number ‘2’ and one face with number ‘3’. If die is rolled once, determine

  1. P(2)
  2. P(1 or 3)
  3. P(not 3)

Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among the 100 students, what is the probability that

  1. you both enter the same sections?
  2. you both enter the different sections?

A dice is thrown. Find the probability of getting:

 2 or 4


A dice is thrown. Find the probability of getting a multiple of 2 or 3.

 

In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6


In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10


In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.

 

Three coins are tossed together. Find the probability of getting at least one head and one tail.

 

Two dice are thrown. Find the odds in favour of getting the sum 4.


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that  at least one is green?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is even numbered


If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).

 


One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.


Find the probability of getting 2 or 3 tails when a coin is tossed four times.

 

One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are


Three integers are chosen at random from the first 20 integers. The probability that their product is even is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is


A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is


Three numbers are chosen from 1 to 20. The probability that they are not consecutive is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×