हिंदी

A Box Contains 6 Nails and 10 Nuts. Half of the Nails and Half of the Nuts Are Rusted. If One Item is Chosen at Random, the Probability that It is Rusted Or is a Nail is (A) 3/16 (B) 5/16 (C) 11/16 - Mathematics

Advertisements
Advertisements

प्रश्न

A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is

विकल्प

  •  3/16

  •  5/16

  •  11/16

  •  14/16

     
MCQ

उत्तर

11/16

If the numbers of nails and nuts are 6 and 10, respectively, then the numbers of rusted nails and rusted nuts are 3 and 5, respectively.
Total number of items = 6 + 10 = 16
Total number of rusted items = 3 + 5 = 8
Total number of ways of drawing one item = 16C1
Let R and N be the events where both the items drawn are rusted items and nails, respectively.
R and N are not mutually exclusive events, because there are 3 rusted nails.
P(either a rusted item or a nail ) = P (R ∪ N)
                                                = P(R) + P (N) - P (R ∩ N)
                                                 =\[\frac{^{6}{}{C}_1}{^{16}{}{C}_1} + \frac{^{8}{}{C}_1}{^{16}{}{C}_1} - \frac{^{3}{}{C}_1}{^{16}{}{C}_1}\]

                                                  = \[\frac{6}{16} + \frac{8}{16} - \frac{3}{16} = \frac{11}{16}\]

 
shaalaa.com
Probability - Probability of 'Not', 'And' and 'Or' Events
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 33: Probability - Exercise 33.6 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 33 Probability
Exercise 33.6 | Q 30 | पृष्ठ ७३

संबंधित प्रश्न

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).


In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?


In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that

  1. The student opted for NCC or NSS.
  2. The student has opted neither NCC nor NSS.
  3. The student has opted NSS but not NCC.

A dice is thrown. Find the probability of getting a prime number


A dice is thrown. Find the probability of getting:

 2 or 4


In a simultaneous throw of a pair of dice, find the probability of getting a doublet


In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers


In a simultaneous throw of a pair of dice, find the probability of getting a sum greater than 9


In a simultaneous throw of a pair of dice, find the probability of getting  an even number on first


In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 6


In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7


In a simultaneous throw of a pair of dice, find the probability of getting neither a doublet nor a total of 10


In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die


In a simultaneous throw of a pair of dice, find the probability of getting a total greater than 8.

 

Three coins are tossed together. Find the probability of getting exactly two heads


Three coins are tossed together. Find the probability of getting at least one head and one tail.

 

Two dice are thrown. Find the odds in favour of getting the sum  What are the odds against getting the sum 6?


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that  at least one is green?


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .


A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is red or even numbered.


Fill in the blank in the table:

P (A) P (B) P (A ∩ B) P(A∪ B)
0.5 0.35 ..... 0.7

If and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).


If A and B are two events associated with a random experiment such that
P(A) = 0.5, P(B) = 0.3 and P (A ∩ B) = 0.2, find P (A ∪ B).


If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).

 


One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.


Find the probability of getting 2 or 3 tails when a coin is tossed four times.

 

The probability that a leap year will have 53 Fridays or 53 Saturdays is


A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


A box contains  10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is


Three integers are chosen at random from the first 20 integers. The probability that their product is even is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is


Three numbers are chosen from 1 to 20. The probability that they are not consecutive is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×