Advertisements
Advertisements
Question
6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is
Options
- \[\frac{1}{432}\]
- \[\frac{12}{431}\]
- \[\frac{1}{132}\]
None of these
Solution
Total number of ways in which 6 boys and 6 girls can sit in a row = 12!
Consider 6 girls as one group, then 6 boys and one group can arrange in 7! ways.
Now, 6 girls in the group can arrange among themselves in 6!.
So, the number of ways in which all the girls sit together is 7! × 6!.
∴ P(all girls sit together) = \[\frac{\text{ Number of ways in which all girls sit together} }{\text{ Total number of ways in which 6 boys and 6 girls sit in a row} } = \frac{7! 6!}{12!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{12 \times 11 \times 10 \times 9 \times 8} = \frac{1}{132}\]
APPEARS IN
RELATED QUESTIONS
Describe the sample space for the indicated experiment: A coin is tossed four times.
Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment?
A coin is tossed. If the out come is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for the experiment?
Two dice are thrown. Describe the sample space of this experiment.
A coin is tossed. If it shows tail, we draw a ball from a box which contains 2 red 3 black balls; if it shows head, we throw a die. Find the sample space of this experiment.
In a random sampling three items are selected from a lot. Each item is tested and classified as defective (D) or non-defective (N). Write the sample space of this experiment.
2 boys and 2 girls are in room P and 1 boy 3 girls are in room Q. Write the sample space for the experiment in which a room is selected and then a person.
An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
A coin is tossed. Find the total number of elementary events and also the total number events associated with the random experiment.
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is either a black card or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is black and a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither a heart nor a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is spade or an ace
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
A bag contains 6 red, 4 white and 8 blue balls. if three balls are drawn at random, find the probability that one is red, one is white and one is blue.
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that two are blue and one is red
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace
There are four men and six women on the city councils. If one council member is selected for a committee at random, how likely is that it is a women?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 4?
A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has at most one girl?
Five cards are drawn from a well-shuffled pack of 52 cards. Find the probability that all the five cards are hearts.
A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that both the tickets have prime numbers on them
An integer is chosen at random from first 200 positive integers. Find the probability that the integer is divisible by 6 or 8.
A sample space consists of 9 elementary events E1, E2, E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1, E5, E8}, B = {E2, E5, E8, E9}
Compute P(A), P(B) and P(A ∩ B).
Two dice are thrown simultaneously. The probability of obtaining total score of seven is
The probability of getting a total of 10 in a single throw of two dices is
A die is rolled, then the probability that a number 1 or 6 may appear is
A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random. The probability that at least one of them is an ace is
Without repetition of the numbers, four digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is
How many two-digit positive integers are multiples of 3?
What is the probability that a randomly chosen two-digit positive integer is a multiple of 3?
A typical PIN (personal identification number) is a sequence of any four symbols chosen from the 26 letters in the alphabet and the ten digits. If all PINs are equally likely, what is the probability that a randomly chosen PIN contains a repeated symbol?
The probability that a randomly chosen 2 × 2 matrix with all the entries from the set of first 10 primes, is singular, is equal to ______.
A bag contains 20 tickets numbered 1 to 20. Two tickets are drawn at random. The probability that both the numbers on the ticket are prime is ______.
Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.
An urn contains nine balls of which three are red, four are blue and two are green. Three balls are drawn at random without replacement from the urn. The probability that the three balls have different colours is ______.