Advertisements
Advertisements
Question
In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.
Solution
It is given that from a well-shuffled pack of cards, four cards are missing out.
∴ Total number of elementary events, n(S) = 52C4
Let E be the event where four cards are missing from each suit.
i.e. n(E)= 13C1 × 13C1 × 13C1 × 13C1
Hence, required probability = \[\frac{n\left( E \right)}{n\left( S \right)} = \frac{^{13}{}{C}_1 \times ^{13}{}{C}_1 \times ^{13}{}{C}_1 \times ^{13}{}{C}_1}{^{52}{}{C}_4}\]
\[= \frac{13 \times 13 \times 13 \times 13}{\frac{52 \times 51 \times 50 \times 49}{4 \times 3 \times 2 \times 1}}\]
\[ = \frac{13 \times 13 \times 13 \times 13}{13 \times 17 \times 25 \times 49}\]
\[ = \frac{2197}{20825}\]
APPEARS IN
RELATED QUESTIONS
Describe the sample space for the indicated experiment: A coin is tossed four times.
Describe the sample space for the indicated experiment: A coin is tossed and then a die is rolled only in case a head is shown on the coin.
A coin is tossed. If the out come is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for the experiment?
An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.
A coin is tossed repeatedly until a tail comes up for the first time. Write the sample space for this experiment.
A box contains 1 red and 3 black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
2 boys and 2 girls are in room P and 1 boy 3 girls are in room Q. Write the sample space for the experiment in which a room is selected and then a person.
A box contains 1 white and 3 identical black balls. Two balls are drawn at random in succession without replacement. Write the sample space for this experiment.
An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
A die is thrown repeatedly until a six comes up. What is the sample space for this experiment.
A card is picked up from a deck of 52 playing cards.
What is the sample space of the experiment?
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is either a black card or a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither a heart nor a king
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is spade or an ace
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a diamond card
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black card
From a deck of 52 cards, four cards are drawn simultaneously, find the chance that they will be the four honours of the same suit.
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are white
A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are of the same colour.
A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red and two are white
Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?
The face cards are removed from a full pack. Out of the remaining 40 cards, 4 are drawn at random. what is the probability that they belong to different suits?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is greater than 12?
20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is divisible by 5?
Five cards are drawn from a well-shuffled pack of 52 cards. Find the probability that all the five cards are hearts.
An urn contains 7 white, 5 black and 3 red balls. Two balls are drawn at random. Find the probability that both the balls are red .
In a large metropolitan area, the probabilities are 0.87, 0.36, 0.30 that a family (randomly chosen for a sample survey) owns a colour television set, a black and white television set, or both kinds of sets. What is the probability that a family owns either any one or both kinds of sets?
Three dice are thrown simultaneously. What is the probability of getting 15 as the sum?
If the letters of the word 'MISSISSIPPI' are written down at random in a row, what is the probability that four S's come together.
What is the probability that the 13th days of a randomly chosen month is Friday?
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral.
If A and B are two independent events such that \[P (A \cap B) = \frac{1}{6}\text{ and } P (A \cap B) = \frac{1}{3},\] then write the values of P (A) and P (B).
The probability of getting a total of 10 in a single throw of two dices is
The probabilities of happening of two events A and B are 0.25 and 0.50 respectively. If the probability of happening of A and B together is 0.14, then probability that neither Anor B happens is
Three of the six vertices of a regular hexagon are chosen at random. What is the probability that the triangle with these vertices is equilateral?
Suppose an integer from 1 through 1000 is chosen at random, find the probability that the integer is a multiple of 2 or a multiple of 9.