Advertisements
Advertisements
प्रश्न
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
उत्तर
Total number of marbles = (6 + 4) = 10
Let S be the sample space.
Then n(S) = number of ways of selecting one marble out of 10 = 10C1 = 10 ways
Let E1 = event of getting a white marble
∴ n(E1) = 4C1 = 4
Hence, required probability = \[\frac{^{4}{}{C}_1}{^{10}{}{C}_1} = \frac{4}{10} = \frac{2}{5}\]
APPEARS IN
संबंधित प्रश्न
If `2/11` is the probability of an event, what is the probability of the event ‘not A’.
In Class XI of a school 40% of the students study Mathematics and 30% study Biology. 10% of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
The probability that a student will pass the final examination in both English and Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of passing the English examination is 0.75, what is the probability of passing the Hindi examination?
In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that
- The student opted for NCC or NSS.
- The student has opted neither NCC nor NSS.
- The student has opted NSS but not NCC.
In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.
Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.
A dice is thrown. Find the probability of getting:
2 or 4
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers
In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces
In a simultaneous throw of a pair of dice, find the probability of getting a sum more than 7
In a simultaneous throw of a pair of dice, find the probability of getting a number greater than 4 on each die
Three coins are tossed together. Find the probability of getting exactly two heads
Three coins are tossed together. Find the probability of getting at least two heads
Two dice are thrown. Find the odds in favour of getting the sum 5.
What are the odds in favour of getting a spade if the card drawn from a well-shuffled deck of cards? What are the odds in favour of getting a king?
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that at least one is green?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white and odd numbered .
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
\[\frac{1}{3}\] | \[\frac{1}{5}\] | \[\frac{1}{15}\] | ...... |
If A and B are two events associated with a random experiment such that P(A) = 0.3, P (B) = 0.4 and P (A ∪ B) = 0.5, find P (A ∩ B).
If A and B are two events associated with a random experiment such that
P (A ∪ B) = 0.8, P (A ∩ B) = 0.3 and P \[(\bar{A} )\]= 0.5, find P(B).
There are three events A, B, C one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C
One of the two events must happen. Given that the chance of one is two-third of the other, find the odds in favour of the other.
In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is 0.8 and the probability of passing the second examination is 0.7. The probability of passing at least one of them is 0.95. What is the probability of passing both?
Find the probability of getting 2 or 3 tails when a coin is tossed four times.
One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are
The probability that a leap year will have 53 Fridays or 53 Saturdays is
A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is
If the probability of A to fail in an examination is \[\frac{1}{5}\] and that of B is \[\frac{3}{10}\] . Then, the probability that either A or B fails is
A box contains 10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
One mapping is selected at random from all mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.