Advertisements
Advertisements
प्रश्न
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn at random. From the box, what is the probability that all are blue?
उत्तर
Out of 60 marbles, five marbles can be drawn in 60C5 ways.
∴ Total number of elementary events = 60C5
Out of 20 blue marbles, five blue marbles can be chosen in 20C5 ways.
∴ Favourable number of events = 20C5 ways
Hence, the required probability is given by
\[\frac{^{20}{}{C}_5}{^{60}{}{C}_5} = \frac{20 \times 19 \times 18 \times 17 \times 16}{60 \times 59 \times 58 \times 57 \times 56}\]
\[ = \frac{19 \times 6 \times 17}{59 \times 29 \times 57 \times 7}\]
\[ = \frac{2 \times 17}{59 \times 29 \times 7}\]
\[ = \frac{34}{11977}\]
APPEARS IN
संबंधित प्रश्न
If `2/11` is the probability of an event, what is the probability of the event ‘not A’.
A letter is chosen at random from the word ‘ASSASSINATION’. Find the probability that letter is
- a vowel
- an consonant
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P(not A).
A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16. Determine P (not B)
In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random, find the probability that
- The student opted for NCC or NSS.
- The student has opted neither NCC nor NSS.
- The student has opted NSS but not NCC.
In a certain lottery, 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy one ticket.
In a simultaneous throw of a pair of dice, find the probability of getting a doublet
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of prime numbers
In a simultaneous throw of a pair of dice, find the probability of getting a doublet of odd numbers
In a simultaneous throw of a pair of dice, find the probability of getting an even number on one and a multiple of 3 on the other
In a simultaneous throw of a pair of dice, find the probability of getting neither 9 nor 11 as the sum of the numbers on the faces
In a simultaneous throw of a pair of dice, find the probability of getting a sum less than 7
In a simultaneous throw of a pair of dice, find the probability of getting odd number on the first and 6 on the second
In a simultaneous throw of a pair of dice, find the probability of getting a total of 9 or 11
Three coins are tossed together. Find the probability of getting exactly two heads
Three coins are tossed together. Find the probability of getting at least two heads
Two dice are thrown. Find the odds in favour of getting the sum 5.
Two dice are thrown. Find the odds in favour of getting the sum What are the odds against getting the sum 6?
A box contains 6 red marbles numbered 1 through 6 and 4 white marbles numbered from 12 through 15. Find the probability that a marble drawn is white .
Fill in the blank in the table:
P (A) | P (B) | P (A ∩ B) | P(A∪ B) |
\[\frac{1}{3}\] | \[\frac{1}{5}\] | \[\frac{1}{15}\] | ...... |
There are three events A, B, C one of which must and only one can happen, the odds are 8 to 3 against A, 5 to 2 against B, find the odds against C
A card is drawn at random from a well-shuffled deck of 52 cards. Find the probability of its being a spade or a king.
100 students appeared for two examination, 60 passed the first, 50 passed the second and 30 passed both. Find the probability that a student selected at random has passed at least one examination.
The probability that a leap year will have 53 Fridays or 53 Saturdays is
A person write 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is
A box contains 10 good articles and 6 defective articles. One item is drawn at random. The probability that it is either good or has a defect, is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floor is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is
Three numbers are chosen from 1 to 20. The probability that they are not consecutive is
In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded. What is the probability of not getting a prize if you buy two tickets.