हिंदी

In the Given Figure, Abcde is a Pentagon Inscribed in a Circle Such that Ac is a Diameter and Side Bc//Ae.If ∠ Bac=50°, Find Giving Reasons: (I) ∠Acb (Ii) ∠Edc (Iii) ∠Bec Hence Prove that Be - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, ABCDE is a pentagon inscribed in a circle such that AC is a diameter and side BC//AE.If
∠ BAC=50°, find giving reasons:

(i) ∠ACB

(ii) ∠EDC

(iii) ∠BEC

Hence prove that BE is also a diameter

योग

उत्तर

Let ∠ACB be x, ∠EDC be y and ∠BEC as z.
Now, ∠ABC = 90°                   {Angle in a semi-circle}
(i)  ∴ In ΔABC, ∠ABC + ∠BAC + ∠ACB = 180°

⇒ 90° + 50° + ∠ACB = 180°

        ∠ACB = 40° = x     

(ii) Now, ∠EAC = ∠ACB   {Alternate interior angles  ∴ AC is transversal to   the parallel lines AE & BC}

∴  ∠EAC = 40°

Also, ∠EAC + ∠EDC = 180°

∴ 40° + ∠EDC = 180°
⇒  ∠EDC  = 140° = y 

(iii)  ∠EBC + ∠EDC = 180°      {Angles in cyclic quadrilateral}

∠EBC + 140°  =  180° 
∠EBC = 40° 
∴ In ΔEBC
∠BEC + ∠ECB + ∠EBC = 180° 
∴ ∠BEC  + 90°  + 40°  = 180° 

∴ ∠BEC  = 50°

Also in  ΔEAB

∠EAB = ∠EAC + ∠BAC

          = 40° + 50°

∠EAB = 90°

We know, if an angle of a triangle in a circle is 90o then, the hypotenuse must be the diameter of the circle. Hence, BE is the diameter of the circle.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) Set 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×