हिंदी

In a quadrilateral ABCD, CO and DO are the bisectors of ∠C and ∠D respectively. Prove that ∠ C O D = 1 2 ( ∠ A + ∠ B ) . - Mathematics

Advertisements
Advertisements

प्रश्न

In a quadrilateral ABCD, CO and DO are the bisectors of ∠C and ∠D respectively. Prove that \[∠COD = \frac{1}{2}(∠A + ∠B) .\] 

 
टिप्पणी लिखिए

उत्तर

 

\[ ∠COD = 180° - \left(∠OCD + ∠ODC \right)\]
\[ = 180°- \frac{1}{2}\left(∠C + ∠D \right)\]
\[ = 180°- \frac{1}{2}\left[ 360° - \left(∠A + ∠B \right) \right]\]
\[ = 180°- 180°+ \frac{1}{2}\left( ∠A + ∠B \right)\]
\[ = \frac{1}{2}\left( ∠A +∠B \right)\]
\[ = RHS\]
\[\text{ Hence proved } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Understanding Shapes-II (Quadrilaterals) - Exercise 16.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
अध्याय 16 Understanding Shapes-II (Quadrilaterals)
Exercise 16.1 | Q 17 | पृष्ठ १७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×