English

In a quadrilateral ABCD, CO and DO are the bisectors of ∠C and ∠D respectively. Prove that ∠ C O D = 1 2 ( ∠ A + ∠ B ) . - Mathematics

Advertisements
Advertisements

Question

In a quadrilateral ABCD, CO and DO are the bisectors of ∠C and ∠D respectively. Prove that \[∠COD = \frac{1}{2}(∠A + ∠B) .\] 

 
Short Note

Solution

 

\[ ∠COD = 180° - \left(∠OCD + ∠ODC \right)\]
\[ = 180°- \frac{1}{2}\left(∠C + ∠D \right)\]
\[ = 180°- \frac{1}{2}\left[ 360° - \left(∠A + ∠B \right) \right]\]
\[ = 180°- 180°+ \frac{1}{2}\left( ∠A + ∠B \right)\]
\[ = \frac{1}{2}\left( ∠A +∠B \right)\]
\[ = RHS\]
\[\text{ Hence proved } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Understanding Shapes-II (Quadrilaterals) - Exercise 16.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 8
Chapter 16 Understanding Shapes-II (Quadrilaterals)
Exercise 16.1 | Q 17 | Page 17
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×