Advertisements
Advertisements
प्रश्न
In right angled ΔLMN, if ∠N =θ, ∠M = 90, cos θ =`24/25`, find sin θ and tan θ Similarly, find (sin2 θ) and (cos2 θ).
उत्तर
In right ∆LMN, ∠N = θ
cos θ = `24/25`
⇒ `"MN"/"LN" = 24/25`
Let MN = 24k and LN = 25k
Using Pythagoras theorem, we have
LN2 = LM2 + MN2
⇒ (25k)2 = LM2 + (24k)2
⇒ LM2 = 625k2 − 576k2
⇒ LM2 = 49k2
⇒ LM = `sqrt(49k^2)`
⇒ LM = 7k
Now,
sin θ = `["LM"]/["LN"] = [7k]/[25k] = 7/25`
tan θ = `["LM"]/["NM"] = [7k]/[24k] = 7/24`
Also,
sin2 θ = `( 7/25)^2 = 49/625`
cos2 θ = `(24/25)^2 = 576/625`
APPEARS IN
संबंधित प्रश्न
In the given Figure, ∠R is the right angle of ΔPQR. Write the following ratios.
- sin P
- cos Q
- tan P
- tan Q
In the right angled Δ XYZ, ∠XYZ = 90° and a, b, c are the lengths of the sides as shown in the figure. Write the following ratios,
- sin X
- tan Z
- cos X
- tan X.
In right angled ΔLMN, ∠LMN = 90°, ∠L = 50° and ∠N = 40°, write the following ratios.
- sin 50°
- cos 50°
- tan 40°
- cos 40°
In the given figure, ∠PQR = 90°, ∠PQS = 90°, ∠PRQ = α and ∠QPS = θ Write the following trigonometric ratios.
- sin α, cos α, tan α
- sin θ, cos θ, tan θ
In the given figure, `angle` PQR = 90° , `angle` PQS = 90° , `angle` PRQ = θ and `angle` QPS = θ Write the following trigonometric ratios.
(i) sin θ, cos θ, tan θ
(ii) sin θ , cos θ , tan θ
In right angled ΔTSU, TS = 5, ∠S = 90°, SU = 12 then find sin T, cos T, tan T. Similarly find sin U, cos U, tan U.
In right angled ΔYXZ, ∠X = 90°, XZ = 8 cm, YZ = 17 cm, find sin Y, cos Y, tan Y, sin Z, cos Z, tan Z.