हिंदी

In right angled ΔTSU, TS = 5, ∠S = 90°, SU = 12 then find sin T, cos T, tan T. Similarly find sin U, cos U, tan U. - Geometry

Advertisements
Advertisements

प्रश्न

In right angled ΔTSU, TS = 5, ∠S = 90°, SU = 12 then find sin T, cos T, tan T. Similarly find sin U, cos U, tan U.

योग

उत्तर

In right ∆TSU,

TU2 = SU2 + TS2            ...(Pythagoras theorem)

⇒ TU2 = 122 + 52 

⇒ TU2 = 144 + 25

⇒ TU2 = 169

⇒ TU = 13

Now,

sin T = `("∠T"  "opposite side")/("Hypotenuse") = "SU"/"TU" = 12/13`

cos T = `("∠T"  "adjacent side")/("Hypotenuse") = "TS"/"TU" = 5/13`

tan T = `("∠T"  "opposite side")/("∠T"  "adjacent side") = "SU"/"TS"  = 12/5`

Also,

sin U = `("∠U"  "opposite side")/("Hypotenuse") = "TS"/"TU" = 5/13`

cos U = `("∠U"  "adjacent side")/("Hypotenuse") = "SU"/"TU" = 12/13`

tan U = `("∠U"  "opposite side")/("∠U"  "adjacent side") = "TS"/"SU" = 5/12`

shaalaa.com
Terms Related to Right Angled Triangle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometry - Problem Set 8 [पृष्ठ ११३]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 9 Standard Maharashtra State Board
अध्याय 8 Trigonometry
Problem Set 8 | Q 2. | पृष्ठ ११३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×