हिंदी

In the Figure δAbc is Isosceles with Ab = Ac. Prove That: ∠A : ∠B = 1 : 3 - Mathematics

Advertisements
Advertisements

प्रश्न

In the figure ΔABC is isosceles with AB = AC. Prove that:
∠A : ∠B = 1 : 3

योग

उत्तर

In ΔDEC,
∠DEC = ∠ADE + ∠A = 2a    ...(ext. Angle to ΔADE)
DE = DC
⇒ ∠DEC = ∠DCE = 2a    .........(ii)
In ΔBDC, let ∠B = b
DC = BC
⇒ ∠BDC = ∠B = b       .........(iii)
In ΔABC,
∠ADB =∠ADE + ∠EDC + ∠BDC
180 = a + ∠EDC + b (from (i) and (ii))
∠EDC = 180° - a - b  .......(iv)
Now again in ΔDEC
180° = ∠EDC + ∠DCE + ∠DEC    ...(from (ii))
180° =∠EDC + 2a + 2a
∠EDC = 180° - 4a
Equality (iv) and (v)
180° - a - b = 180° - 4a
3a = b      .....(vi)
`"a"/"b"  = (1)/(3) = (∠"A")/(∠"B")`
Hence, ∠A : ∠B = 1 : 3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Isosceles Triangle - Exercise 12.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 12 Isosceles Triangle
Exercise 12.1 | Q 16.1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×