Advertisements
Advertisements
प्रश्न
In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°.
Calculate:
- ∠DAB,
- ∠DBA,
- ∠DBC,
- ∠ADC.
Also, show that the ΔAOD is an equilateral triangle.

उत्तर
i. ABCD is a cyclic quadrilateral
∴ ∠DCB + ∠DAB = 180°
(Pair of opposite angles in a cyclic quadrilateral are supplementary)
`=>` ∠DAB = 180° – 120° = 60°
ii. ∠ADB = 90°
(Angle in a semicircle is a right angle)
∴ ∠DBA = 90° – ∠DAB
= 90° – 60°
= 30°
iii. OD = OB
∴ ∠ODB = ∠OBD
Or ∠ABD = 30°
Also, AB || ED
∴ ∠DBC = ∠ODB = 30° (Alternate angles)
iv. ∠ABD + ∠DBC = 30° + 30° = 60°
`=>` ∠ABC = 60°
In cyclic quadrilateral ABCD,
∠ADC + ∠ABC = 180°
(Pair of opposite angles in a cyclic quadrilateral are supplementary)
`=>` ∠ADC = 180° – 60° = 120°
In ∆AOD, OA = OD (Radii of the same circle)
∠AOD = ∠DAO Or ∠DAB = 60° [Proved in (i)]
`=>` ∠AOD = 60°
∠ADO = ∠AOD =∠DAO = 60°
∴ ∆AOD is an equilateral triangle.
APPEARS IN
संबंधित प्रश्न
ABC is a right angles triangle with AB = 12 cm and AC = 13 cm. A circle, with centre O, has been inscribed inside the triangle.
Calculate the value of x, the radius of the inscribed circle.
Two circles intersect at P and Q. Through P diameters PA and PB of the two circles are drawn. Show that the points A, Q and B are collinear.
Prove that the perimeter of a right triangle is equal to the sum of the diameter of its incircle and twice the diameter of its circumcircle.
In the figure, given below, AB and CD are two parallel chords and O is the centre. If the radius of the circle is 15 cm, fins the distance MN between the two chords of lengths 24 cm and 18 cm respectively.
In the given figure, AB is a diameter of the circle. Chord ED is parallel to AB and ∠EAB = 63°. Calculate : ∠BCD.
In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°.
Calculate : ∠DBC
Also, show that the ΔAOD is an equilateral triangle.
In the following figure, AD is the diameter of the circle with centre O. chords AB, BC and CD are equal. If ∠DEF = 110°, Calculate: ∠FAB.
In the given figure, O is the centre of the circle and ∠PBA = 45°. Calculate the value of ∠PQB.
In Fig, Chord ED is parallel to the diameter AC of the circle. Given ∠CBE = 65°, Calculate ∠ DEC.
In the figure given alongside, AD is the diameter of the circle. If ∠ BCD = 130°, Calculate: (i) ∠ DAB (ii) ∠ ADB.