Advertisements
Advertisements
प्रश्न
In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation
उत्तर
Z = set of all integers
Relation R is defined on Z by m R n if m – n is divisible by 7.
R = {(m, n), m, n ∈ Z/m – n divisible by 7}
m – n divisible by 7
∴ m – n = 7k where k is an integer.
a) Reflexive:
m – m = 0 = 0 × 7
m – m is divisible by 7
∴ (m, m) ∈ R for all m ∈ Z
Hence R is reflexive.
b) Symmetric:
Let (m, n) ∈ R ⇒ m – n is divisible by 7
m – n = 7k
n – m = – 7k
n – m = (– k)7
∴ n – m is divisible by 7
∴ (n, m) ∈ R.
c) Transitive:
Let (m, n) and (n, r) ∈ R
m – n is divisible by 7
m – n = 7k ......(1)
n – r is divisible by 7
n – r = 7k1 ......(2)
(m – n) + (n – r) = 7k + 7k1
m – r = (k + k1) 7
m – r is divisible by 7.
∴ (m, r) ∈ R
Hence R is transitive.
R is an equivalence relation.
APPEARS IN
संबंधित प्रश्न
A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.
Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b ∈ A, b is exactly divisible by a}.
- Write R in roster form
- Find the domain of R
- Find the range of R.
Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}.
Determine the domain and range of the relation R defined by
(i) R = [(x, x + 5): x ∈ (0, 1, 2, 3, 4, 5)]
Determine the domain and range of the relations:
(ii) \[S = \left\{ \left( a, b \right) : b = \left| a - 1 \right|, a \in Z \text{ and} \left| a \right| \leq 3 \right\}\]
The adjacent figure shows a relationship between the sets P and Q. Write this relation in (i) set builder form (ii) roster form. What is its domain and range?
For the relation R1 defined on R by the rule (a, b) ∈ R1 ⇔ 1 + ab > 0. Prove that: (a, b) ∈ R1 and (b , c) ∈ R1 ⇒ (a, c) ∈ R1 is not true for all a, b, c ∈ R.
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
Show that:
(ii) (a, b) R (c, d) ⇒ (c, d) R (a, b) for all (a, b), (c, d) ∈ N × N
If R = [(x, y) : x, y ∈ W, 2x + y = 8], then write the domain and range of R.
R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is
Let R be a relation from a set A to a set B, then
If A = {a, b, c}, B = {x, y}, find A × B, B × A, A × A, B × B
Select the correct answer from given alternative.
A relation between A and B is
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}
Answer the following:
Show that the following is an equivalence relation
R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is transitive
Choose the correct alternative:
The relation R defined on a set A = {0, −1, 1, 2} by xRy if |x2 + y2| ≤ 2, then which one of the following is true?