Advertisements
Advertisements
प्रश्न
In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation
उत्तर
Z = set of all integers
Relation R is defined on Z by m R n if m – n is divisible by 7.
R = {(m, n), m, n ∈ Z/m – n divisible by 7}
m – n divisible by 7
∴ m – n = 7k where k is an integer.
a) Reflexive:
m – m = 0 = 0 × 7
m – m is divisible by 7
∴ (m, m) ∈ R for all m ∈ Z
Hence R is reflexive.
b) Symmetric:
Let (m, n) ∈ R ⇒ m – n is divisible by 7
m – n = 7k
n – m = – 7k
n – m = (– k)7
∴ n – m is divisible by 7
∴ (n, m) ∈ R.
c) Transitive:
Let (m, n) and (n, r) ∈ R
m – n is divisible by 7
m – n = 7k ......(1)
n – r is divisible by 7
n – r = 7k1 ......(2)
(m – n) + (n – r) = 7k + 7k1
m – r = (k + k1) 7
m – r is divisible by 7.
∴ (m, r) ∈ R
Hence R is transitive.
R is an equivalence relation.
APPEARS IN
संबंधित प्रश्न
Define a relation R on the set N of natural numbers by R = {(x, y): y = x + 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the domain and the range.
Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.
Determine the domain and range of the relations:
(i) R = {(a, b) : a ∈ N, a < 5, b = 4}
Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?
(a, b) ∈ R implies (b, a) ∈ R
Justify your answer in case.
R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is
If R is a relation on a finite set having n elements, then the number of relations on A is
If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P
Let A = {6, 8} and B = {1, 3, 5}
Show that R1 = {(a, b)/a ∈ A, b ∈ B, a − b is an even number} is a null relation. R2 = {(a, b)/a ∈ A, b ∈ B, a + b is odd number} is an universal relation
Write the relation in the Roster Form. State its domain and range
R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}
Identify which of if the following relations are reflexive, symmetric, and transitive.
Relation | Reflexive | Symmetric | Transitive |
R = {(a, b) : a, b ∈ Z, a – b is an integer} | |||
R = {(a, b) : a, b ∈ N, a + b is even} | √ | √ | x |
R = {(a, b) : a, b ∈ N, a divides b} | |||
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} | |||
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} | |||
R = {(a, b) : Line a is perpendicular to line b in a plane} | |||
R = {(a, b) : a, b ∈ R, a < b} | |||
R = {(a, b) : a, b ∈ R, a ≤ b3} |
Answer the following:
Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.
A Relation R is given by the set `{(x, y)/y = x + 3, x ∈ {0, 1, 2, 3, 4, 5}}`. Determine its domain and range
A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M), and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000, and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M, and E respectively. If A1, A2, A3, A4, and A5 were Assistants; C1, C2, C3, C4 were Clerks; M1, M2, M3 were managers and E1, E2 was Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram
Multiple Choice Question :
The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation
Choose the correct alternative:
Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is
Is the given relation a function? Give reasons for your answer.
t = {(x, 3) | x is a real number
Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.
Let N denote the set of all natural numbers. Define two binary relations on N as R1 = {(x, y) ∈ N × N : 2x + y = 10} and R2 = {(x, y) ∈ N × N : x + 2y = 10}. Then ______.