मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation - Mathematics

Advertisements
Advertisements

प्रश्न

In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation

बेरीज

उत्तर

Z = set of all integers

Relation R is defined on Z by m R n if m – n is divisible by 7.

R = {(m, n), m, n ∈ Z/m – n divisible by 7}

m – n divisible by 7

∴ m – n = 7k where k is an integer.

a) Reflexive:

m – m = 0 = 0 × 7

m – m is divisible by 7

∴ (m, m) ∈ R for all m ∈ Z

Hence R is reflexive.

b) Symmetric:

Let (m, n) ∈ R ⇒ m – n is divisible by 7

m – n = 7k

n – m = – 7k

n – m = (– k)7

∴ n – m is divisible by 7

∴ (n, m) ∈ R.

c) Transitive:

Let (m, n) and (n, r) ∈ R

m – n is divisible by 7

m – n = 7k     ......(1)

n – r is divisible by 7

n – r = 7k1   ......(2)

(m – n) + (n – r) = 7k + 7k1

m – r = (k + k1) 7

m – r is divisible by 7.

∴ (m, r) ∈ R

Hence R is transitive.

R is an equivalence relation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets, Relations and Functions - Exercise 1.2 [पृष्ठ १९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 1 Sets, Relations and Functions
Exercise 1.2 | Q 9 | पृष्ठ १९

संबंधित प्रश्‍न

Define a relation R on the set N of natural numbers by R = {(x, y): y = x + 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the domain and the range.


Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.


Determine the domain and range of the relations:

(i) R = {(ab) : a ∈ N, a < 5, b = 4}


Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R implies (b, a) ∈ R

Justify your answer in case.


R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is


If R is a relation on a finite set having n elements, then the number of relations on A is


If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P


Let A = {6, 8} and B = {1, 3, 5}
Show that R1 = {(a, b)/a ∈ A, b ∈ B, a − b is an even number} is a null relation. R2 = {(a, b)/a ∈ A, b ∈ B, a + b is odd number} is an universal relation


Write the relation in the Roster Form. State its domain and range

R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}


Identify which of if the following relations are reflexive, symmetric, and transitive.

Relation Reflexive Symmetric Transitive
R = {(a, b) : a, b ∈ Z, a – b is an integer}      
R = {(a, b) : a, b ∈ N, a + b is even} x
R = {(a, b) : a, b ∈ N, a divides b}      
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0}      
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls}      
R = {(a, b) : Line a is perpendicular to line b in a plane}      
R = {(a, b) : a, b ∈ R, a < b}      
R = {(a, b) : a, b ∈ R, a ≤ b3}      

Answer the following:

Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.


A Relation R is given by the set `{(x, y)/y = x + 3, x ∈ {0, 1, 2, 3, 4, 5}}`. Determine its domain and range


A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M), and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000, and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M, and E respectively. If A1, A2, A3, A4, and A5 were Assistants; C1, C2, C3, C4 were Clerks; M1, M2, M3 were managers and E1, E2 was Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram


Multiple Choice Question :

The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive


Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


Is the given relation a function? Give reasons for your answer.

t = {(x, 3) | x is a real number


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


Let N denote the set of all natural numbers. Define two binary relations on N as R1 = {(x, y) ∈ N × N : 2x + y = 10} and R2 = {(x, y) ∈ N × N : x + 2y = 10}. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×