Advertisements
Advertisements
प्रश्न
Identify which of if the following relations are reflexive, symmetric, and transitive.
Relation | Reflexive | Symmetric | Transitive |
R = {(a, b) : a, b ∈ Z, a – b is an integer} | |||
R = {(a, b) : a, b ∈ N, a + b is even} | √ | √ | x |
R = {(a, b) : a, b ∈ N, a divides b} | |||
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} | |||
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} | |||
R = {(a, b) : Line a is perpendicular to line b in a plane} | |||
R = {(a, b) : a, b ∈ R, a < b} | |||
R = {(a, b) : a, b ∈ R, a ≤ b3} |
उत्तर
i. R = {(a, b)/a, b ∈ Z, a - b is an integer}
Let a, b, c ∈ Z
∵ a − a = 0 ∈ Z
∴ aRa ∀ a ∈ Z
∴ R is reflective
Let aRb ∴ a − b is an integer
∴ −(a − b) = b − a is also an integer
∴ bRa
∴ aRb ⇒ bRa ∀ a, b ∈ Z
∴ R is symmetric
Let aRb, bRc
∴ a − b, b − c are integers
∴ (a − b) + (b − c) = a − c is an integer
∴ aRb, bRc ⇒ aRc ∀ a, b, c ∈ Z
∴ R is transitive.
ii. R = {(a, b) / a, b ∈ N, a + b is even}
Let a, b, c ∈ N
a + a = 2a is even
∴ aRa ∀ a ∈ N
R is reflexive
Let aRb . ·. a + b is even
∴ b + a is even
∴ bRa
∴ aRb ⇒ bRa ∀ a, b ∈ N
∴ R is symmetric
Let aRb, bRc
∴ a + b, b + c are even
Let a + b = 2m, b + c = 2n
∴ (a + b) + (b + c) = 2m + 2n
∴ a + c = 2m + 2n -− 2b = 2 (m + n − b) is even
∴ aRc
∴ aRb, bRc ⇒ aRc ∀ a, b, c ∈ N
∴ R is transitive.
iii. R = {(a, b) / a, b ∈ N, a divides b}
∵ a divides a aRa ∀ a ∈ N
∵ R is reflexive
Let a = 2, b = 4
∴ 2 divides 4 so that aRb
But 4 does not divide 2 ∴ `bcancelRa`
∴ aRb `cancel=> bRc`
∴ R is not symmetric
Let aRb, bRc
∴ a divides b, b divides c
∴ b = am, c = bn, m, n ∈ N
∴ c = bn = (am)n = a(mn)
∴ a divides c ∴ aRc
∴ aRb, bRc ⇒ aRc ∀ a, b, c ∈ N
∴ R is transitive.
iv. R = {(a, b) / a, b ∈ N, a2 − 4ab + 3b2 = 0}
aRb if a2 − 4ab + 3b2 = 0
i.e., if (a − b)(a − 3b) = 0
i.e., if a = b or a = 3b
a = a ∴ aRa ∀ a ∈ N
R is reflexive
Let a = 27, b = 9
∴ a = 3b ∴ aRb
`b cancel=a and b cancel= 3a`
`b cancelRa`
`bRb cancel=> bRa`
R is not symmetric
Let a = 27, b = 9, c = 3
a = 3b ∴ aRb
Also, b = 3c ∴ bRc
But `a cancel= c and a cancel= 3c`
`a cancelR c`
`aRb, bRc cancel=> aRc`
R is not transitive.
v. R = {(a, b) / a is a sister of b,
a, b ∈ G = Set of girls}
No girl is her own sister
`a cancelR a` for any a ∈ G
R is not reflexive
Let aRb
a is a sister of b
b is a sister of a
bRa
aRb ⇒ bRa ∀ a, b ∈ G
R is symmetric
Let aRb, bRc
a is a sister of b and b is a sister of c
aRc
aRb, bRc ⇒ aRc ∀ a, b, c ∈ G
R is transitive.
vi. R = {(a, b) / Line a is perpendicular to line b in a plane}
No line is perpendicular to itself
`a cancelR a` for any line
R is not reflexive
Let aRb
a is perpendicular to b
b is perpendicular to a
bRa
aRb ⇒ bRa ∀ a, b
R is symmetric
If a is perpendicular to b and b is perpendicular to c, then a is parallel to c
aRb, bRc `cancel=>` aRc
R is not transitive.
vii. R = {(a, b) / a, be R, a < b}
a ≮ a ∀ a ∈ R
R is not reflexive
Let a = 2, b = 4
a< b
aRb
But b ≮ a
b `cancelR` a
`aRb cancel=> bRa`
R is not symmetric
Let aRb, bRc
a < b, b < c
a < b < c i.e., a < c
aRc
aRb, bRc ⇒ aRc ∀ a, b, c ∈ R
R is transitive.
viii. R = {(a, b) / a, b ∈ R, a ≤ b3 }
Let a = −2
a3 = −8
But −2 > −8
`a cancel≤ a^3` for all a ∈ R
R is not reflexive
Let a = 1, b = 2 so that a3 = 1, b3 = 8
a < b3 ...aRb
But b > a3 `bcancelRa`
aRb ~ bRa
R is not symmetric
Let a = 8, b = 2, c = 1.5
a = b3 ...aRb
c3 = (1.5)3 = 3.375
b < c3
bRc
But a < c3
aRb, bRc `cancel=>` aRc
R is not transitive.
Relation | Reflexive | Symmetric | Transitive |
R = {(a, b) : a, b ∈ Z, a – b is an integer} | √ | √ | √ |
R = {(a, b) : a, b ∈ N, a + b is even} | √ | √ | √ |
R = {(a, b) : a, b ∈ N, a divides b} | √ | x | √ |
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} | √ | x | x |
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} | x | √ | √ |
R = {(a, b) : Line a is perpendicular to line b in a plane} | x | √ | x |
R = {(a, b) : a, b ∈ R, a < b} | x | x | √ |
R = {(a, b) : a, b ∈ R, a ≤ b3} | x | x | √ |
APPEARS IN
संबंधित प्रश्न
The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`
The relation g is defined by g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`
Show that f is a function and g is not a function.
Find the inverse relation R−1 in each of the cases:
(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.
Determine the domain and range of the relation R defined by
(ii) R = {(x, x3) : x is a prime number less than 10}
Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?
(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R
Justify your answer in case.
The adjacent figure shows a relationship between the sets P and Q. Write this relation in (i) set builder form (ii) roster form. What is its domain and range?
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
Show that:
(ii) (a, b) R (c, d) ⇒ (c, d) R (a, b) for all (a, b), (c, d) ∈ N × N
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
(iii) (a, b) R (c, d) and (c, d) R (e, f) ⇒ (a, b) R (e, f) for all (a, b), (c, d), (e, f) ∈ N × N
If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation defined on the set Z of integers, then write domain of R.
Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B
Let R be a relation on N defined by x + 2y = 8. The domain of R is
Let R be a relation from a set A to a set B, then
If R is a relation on a finite set having n elements, then the number of relations on A is
If A = {a, b, c}, B = {x, y}, find A × B, B × A, A × A, B × B
If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P
Write the relation in the Roster Form. State its domain and range
R1 = {(a, a2)/a is prime number less than 15}
Write the relation in the Roster Form. State its domain and range
R6 = {(a, b)/a ∈ N, a < 6 and b = 4}
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}
Answer the following:
Determine the domain and range of the following relation.
R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}
Answer the following:
R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric
Answer the following:
Show that the following is an equivalence relation
R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}
Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R
Multiple Choice Question :
If there are 1024 relation from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is
Multiple Choice Question :
Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.
Let A = {9, 10, 11, 12, 13, 14, 15, 16, 17} and let f : A → N be defined by f(n) = the highest prime factor of n ∈ A. Write f as a set of ordered pairs and find the range of f
Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`
Discuss the following relation for reflexivity, symmetricity and transitivity:
The relation R defined on the set of all positive integers by “mRn if m divides n”
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is reflexive
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is transitive
In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation
Choose the correct alternative:
Let R be the set of all real numbers. Consider the following subsets of the plane R × R: S = {(x, y) : y = x + 1 and 0 < x < 2} and T = {(x, y) : x − y is an integer} Then which of the following is true?
Choose the correct alternative:
Let R be the universal relation on a set X with more than one element. Then R is
If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.
If R2 = {(x, y) | x and y are integers and x2 + y2 = 64} is a relation. Then find R2.
Is the given relation a function? Give reasons for your answer.
g = `"n", 1/"n" |"n"` is a positive integer
Let S = {x ∈ R : x ≥ 0 and `2|sqrt(x) - 3| + sqrt(x)(sqrt(x) - 6) + 6 = 0}`. Then S ______.