मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Identify which of if the following relations are reflexive, symmetric, and transitive. Relation Reflexive Symmetric Transitive R = {(a, b) : a, b ∈ Z, a – b is an integer} R = {(a, b) : a, - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Identify which of if the following relations are reflexive, symmetric, and transitive.

Relation Reflexive Symmetric Transitive
R = {(a, b) : a, b ∈ Z, a – b is an integer}      
R = {(a, b) : a, b ∈ N, a + b is even} x
R = {(a, b) : a, b ∈ N, a divides b}      
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0}      
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls}      
R = {(a, b) : Line a is perpendicular to line b in a plane}      
R = {(a, b) : a, b ∈ R, a < b}      
R = {(a, b) : a, b ∈ R, a ≤ b3}      
बेरीज

उत्तर

i. R = {(a, b)/a, b ∈ Z, a - b is an integer}

Let a, b, c ∈ Z

∵ a − a = 0 ∈ Z

∴ aRa ∀ a ∈ Z

∴ R is reflective

Let aRb ∴ a − b is an integer

∴ −(a − b) = b − a is also an integer

∴ bRa

∴ aRb ⇒ bRa ∀ a, b ∈ Z

∴ R is symmetric

Let aRb, bRc

∴ a − b, b − c are integers

∴ (a − b) + (b − c) = a − c is an integer

∴ aRb, bRc ⇒ aRc ∀ a, b, c ∈ Z

∴ R is transitive.

ii. R = {(a, b) / a, b ∈ N, a + b is even}

Let a, b, c ∈ N

a + a = 2a is even

∴ aRa ∀ a ∈ N

R is reflexive

Let aRb . ·. a + b is even

∴ b + a is even

∴ bRa

∴ aRb ⇒ bRa ∀ a, b ∈ N

∴ R is symmetric

Let aRb, bRc

∴ a + b, b + c are even

Let a + b = 2m, b + c = 2n

∴ (a + b) + (b + c) = 2m + 2n

∴ a + c = 2m + 2n -− 2b = 2 (m + n − b) is even

∴ aRc

∴ aRb, bRc ⇒ aRc ∀ a, b, c ∈ N

∴ R is transitive.

iii. R = {(a, b) / a, b ∈ N, a divides b}

∵ a divides a   aRa ∀ a ∈ N

∵ R is reflexive

Let a = 2, b = 4

∴ 2 divides 4 so that aRb

But 4 does not divide 2 ∴ `bcancelRa`

∴ aRb `cancel=> bRc`

∴ R is not symmetric

Let aRb, bRc

∴ a divides b, b divides c

∴ b = am, c = bn, m, n ∈ N

∴ c = bn = (am)n = a(mn)

∴ a divides c  ∴ aRc

∴ aRb, bRc ⇒ aRc ∀ a, b, c ∈ N

∴ R is transitive.

iv. R = {(a, b) / a, b ∈ N, a2 − 4ab + 3b2 = 0}

aRb if a2 − 4ab + 3b2 = 0

i.e., if (a − b)(a − 3b) = 0

i.e., if a = b or a = 3b

a = a ∴ aRa ∀ a ∈ N

R is reflexive

Let a = 27, b = 9

∴ a = 3b ∴ aRb

`b cancel=a and b cancel= 3a`

`b cancelRa`

`bRb cancel=> bRa`

R is not symmetric

Let a = 27, b = 9, c = 3

a = 3b  ∴ aRb

Also, b = 3c ∴ bRc

But `a cancel= c and a cancel= 3c`

`a cancelR c`

`aRb, bRc cancel=> aRc`

R is not transitive.

v. R = {(a, b) / a is a sister of b,

a, b ∈ G = Set of girls}

No girl is her own sister

`a cancelR a` for any a ∈ G

R is not reflexive

Let aRb

a is a sister of b

b is a sister of a

bRa

aRb ⇒ bRa ∀ a, b ∈ G

R is symmetric

Let aRb, bRc

a is a sister of b and b is a sister of c

aRc

aRb, bRc ⇒ aRc ∀ a, b, c ∈ G

R is transitive. 

vi. R = {(a, b) / Line a is perpendicular to line b in a plane}

No line is perpendicular to itself

`a cancelR a` for any line

R is not reflexive

Let aRb

a is perpendicular to b

b is perpendicular to a

bRa

aRb ⇒ bRa ∀ a, b

R is symmetric

If a is perpendicular to b and b is perpendicular to c, then a is parallel to c

aRb, bRc `cancel=>` aRc

R is not transitive.

vii. R = {(a, b) / a, be R, a < b}

a ≮  a ∀ a ∈ R

R is not reflexive

Let a = 2, b = 4

a< b

aRb

But b ≮  a

b `cancelR` a

`aRb cancel=> bRa`

R is not symmetric

Let aRb, bRc

a < b, b < c

a < b < c i.e., a < c

aRc

aRb, bRc ⇒ aRc ∀ a, b, c ∈ R

R is transitive.

viii. R = {(a, b) / a, b ∈ R, a ≤ b3 }

Let a = −2 

a3 = −8

But −2 > −8

`a cancel≤ a^3` for all a ∈ R

R is not reflexive

Let a = 1, b = 2 so that a3 = 1, b3 = 8

a < b3      ...aRb

But b > a3  `bcancelRa`

aRb ~ bRa

R is not symmetric

Let a = 8, b = 2, c = 1.5

a = b3   ...aRb

c3 = (1.5)3 = 3.375

b < c3

bRc

But a < c3

aRb, bRc `cancel=>` aRc

R is not transitive.

Relation Reflexive Symmetric Transitive
R = {(a, b) : a, b ∈ Z, a – b is an integer}
R = {(a, b) : a, b ∈ N, a + b is even}
R = {(a, b) : a, b ∈ N, a divides b} x
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} x x
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} x
R = {(a, b) : Line a is perpendicular to line b in a plane} x x
R = {(a, b) : a, b ∈ R, a < b} x x
R = {(a, b) : a, b ∈ R, a ≤ b3} x x
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Sets and Relations - Exercise 5.2 [पृष्ठ १०३]

APPEARS IN

संबंधित प्रश्‍न

The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`

The relation g is defined by  g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`

Show that f is a function and g is not a function.


Find the inverse relation R−1 in each of the cases:

(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.

 

Determine the domain and range of the relation R defined by

(ii) R = {(xx3) : x is a prime number less than 10}

 

Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

Justify your answer in case.


The adjacent figure shows a relationship between the sets P and Q. Write this relation in (i) set builder form (ii) roster form. What is its domain and range?


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:

(ii) (ab) R (cd) ⇒ (cd) R (ab) for all (ab), (cd) ∈ N × N

 

 


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N

(iii) (ab) R (cd) and (cd) R (ef) ⇒ (ab) R (ef) for all (ab), (cd), (ef) ∈ N × N

 

If R = {(xy) : xy ∈ Z, x2 + y2 ≤ 4} is a relation defined on the set Z of integers, then write domain of R.


Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, write A and B


Let R be a relation on N defined by x + 2y = 8. The domain of R is


Let R be a relation from a set A to a set B, then


If R is a relation on a finite set having n elements, then the number of relations on A is


If A = {a, b, c}, B = {x, y}, find A × B, B × A, A × A, B × B


If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P


Write the relation in the Roster Form. State its domain and range

R1 = {(a, a2)/a is prime number less than 15}


Write the relation in the Roster Form. State its domain and range

R6 = {(a, b)/a ∈ N, a < 6 and b = 4}


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is symmentric


Answer the following:

Show that the following is an equivalence relation

R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R4 = {(7, –1), (0, 3), (3, 3), (0, 7)}


Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R


Multiple Choice Question :

If there are 1024 relation from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is


Multiple Choice Question :

Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.


Let A = {9, 10, 11, 12, 13, 14, 15, 16, 17} and let f : A → N be defined by f(n) = the highest prime factor of n ∈ A. Write f as a set of ordered pairs and find the range of f


Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`


Discuss the following relation for reflexivity, symmetricity and transitivity:

The relation R defined on the set of all positive integers by “mRn if m divides n”


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is reflexive


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is transitive


In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation


Choose the correct alternative:

Let R be the set of all real numbers. Consider the following subsets of the plane R × R: S = {(x, y) : y = x + 1 and 0 < x < 2} and T = {(x, y) : x − y is an integer} Then which of the following is true?


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


If R2 = {(x, y) | x and y are integers and x2 + y2 = 64} is a relation. Then find R2.


Is the given relation a function? Give reasons for your answer.

g = `"n", 1/"n" |"n"` is a positive integer


Let S = {x ∈ R : x ≥ 0 and `2|sqrt(x) - 3| + sqrt(x)(sqrt(x) - 6) + 6 = 0}`. Then S ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×