Advertisements
Advertisements
प्रश्न
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is reflexive
उत्तर
N = the set of natural numbers.
R is the relation defined on N by
a R b if a + b ≤ 6
R = {(a, b), a, b ∈ N / a + b ≤ 6}
a + b ≤ 6 ⇒ b ≤ 6 – a
a = 1,
b ≤ 6 – 1 = 5
b is 1, 2, 3, 4, 5
∴ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5) ∈ R
a = 2,
b ≤ 6 – 2 = 4
b is 1, 2, 3, 4
∴ (2, 1), (2, 2), (2, 3), (2, 4) ∈ R
a = 3,
b < 6 – 3 = 3
b is 1, 2, 3
∴ (3, 1), (3, 2), (3, 3) ∈ R
a = 4 ,
b < 6 – 4 = 2
b is 1, 2
∴ (4, 1), (4, 2) ∈ R
a = 5,
b < 6 – 5 = 1
b is 1
∴ (5, 1) ∈ R
∴ R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}
Reflexive:
R is not reflexive since (4, 4), (5, 5) ∈
APPEARS IN
संबंधित प्रश्न
Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.
Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.
Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?
(a, b) ∈ R implies (b, a) ∈ R
Justify your answer in case.
Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?
(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R
Justify your answer in case.
If n(A) = 3, n(B) = 4, then write n(A × A × B).
If R = [(x, y) : x, y ∈ W, 2x + y = 8], then write the domain and range of R.
A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is
Write the relation in the Roster Form. State its domain and range
R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}
Answer the following:
Find R : A → A when A = {1, 2, 3, 4} such that R = (a, b)/a − b = 10}
Answer the following:
Show that the following is an equivalence relation
R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R1 = {(2, 1), (7, 1)}
Multiple Choice Question :
If there are 1024 relation from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is reflexive
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence
Is the following relation a function? Justify your answer
R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`
Is the given relation a function? Give reasons for your answer.
h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}
Is the given relation a function? Give reasons for your answer.
t = {(x, 3) | x is a real number
Let S = {x ∈ R : x ≥ 0 and `2|sqrt(x) - 3| + sqrt(x)(sqrt(x) - 6) + 6 = 0}`. Then S ______.