Advertisements
Advertisements
Question
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is reflexive
Solution
N = the set of natural numbers.
R is the relation defined on N by
a R b if a + b ≤ 6
R = {(a, b), a, b ∈ N / a + b ≤ 6}
a + b ≤ 6 ⇒ b ≤ 6 – a
a = 1,
b ≤ 6 – 1 = 5
b is 1, 2, 3, 4, 5
∴ (1, 1), (1, 2), (1, 3), (1, 4), (1, 5) ∈ R
a = 2,
b ≤ 6 – 2 = 4
b is 1, 2, 3, 4
∴ (2, 1), (2, 2), (2, 3), (2, 4) ∈ R
a = 3,
b < 6 – 3 = 3
b is 1, 2, 3
∴ (3, 1), (3, 2), (3, 3) ∈ R
a = 4 ,
b < 6 – 4 = 2
b is 1, 2
∴ (4, 1), (4, 2) ∈ R
a = 5,
b < 6 – 5 = 1
b is 1
∴ (5, 1) ∈ R
∴ R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}
Reflexive:
R is not reflexive since (4, 4), (5, 5) ∈
APPEARS IN
RELATED QUESTIONS
The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`
The relation g is defined by g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`
Show that f is a function and g is not a function.
Let A = [1, 2, 3, ......., 14]. Define a relation on a set A by
R = {(x, y) : 3x − y = 0, where x, y ∈ A}.
Depict this relationship using an arrow diagram. Write down its domain, co-domain and range.
Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(x, y) : x − yis odd}. Write R in roster form.
If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is
If (x − 1, y + 4) = (1, 2) find the values of x and y
If `(x + 1/3, y/3 - 1) = (1/2, 3/2)`, find x and y
If A = {a, b, c}, B = {x, y}, find A × B, B × A, A × A, B × B
Write the relation in the Roster Form. State its domain and range
R2 = `{("a", 1/"a") // 0 < "a" ≤ 5, "a" ∈ "N"}`
Write the relation in the Roster Form. State its domain and range
R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}
Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible
{(x, y) | x = 2y, x ∈ {2, 3, 4, 5}, y ∈ {1, 2, 3, 4}
Multiple Choice Question :
Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.
Discuss the following relation for reflexivity, symmetricity and transitivity:
Let A be the set consisting of all the female members of a family. The relation R defined by “aRb if a is not a sister of b”
Discuss the following relation for reflexivity, symmetricity and transitivity:
On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”
Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is reflexive
Let A = {a, b, c}. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?
If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.
Is the given relation a function? Give reasons for your answer.
h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}
Is the given relation a function? Give reasons for your answer.
f = {(x, x) | x is a real number}