English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation - Mathematics

Advertisements
Advertisements

Question

Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation

Sum

Solution

Given P = the set of all triangles in a plane.

R is the relation defined by aRb if a is similar to b.

R = {(a, b) : a is similar to b for a, b ∈ p}

(a) Reflexive:

(a, a) ⇒ a is similar to a for all a ∈ P

∴ R is reflexive.

(b) Symmetric: 

Let (a, b) ∈ R ⇒ a is similar to b

⇒ b is similar to a

∴ (b, a) ∈ R

Hence R is symmetric.

c) Transitive: 

Let (a, b) and (b, c) ∈ R

(a, b) ∈ R ⇒ a is similar to b

(b, c) ∈ R ⇒ b is similar to c

∴ a is similar to c.

Hence R is transitive.

∴ R is an equivalence relation on P.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets, Relations and Functions - Exercise 1.2 [Page 18]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 1 Sets, Relations and Functions
Exercise 1.2 | Q 4 | Page 18

RELATED QUESTIONS

Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.


Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.

 

Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R implies (b, a) ∈ R

Justify your answer in case.


Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by {(ab) : ab ∈ A, b is exactly divisible by a}

(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R. 


If R is a relation from set A = (11, 12, 13) to set B = (8, 10, 12) defined by y = x − 3, then write R−1.

 


If (x − 1, y + 4) = (1, 2) find the values of x and y


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)


Write the relation in the Roster Form. State its domain and range

R2 = `{("a", 1/"a") // 0 < "a" ≤ 5, "a" ∈ "N"}`


Write the relation in the Roster Form. State its domain and range

R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = (a, b)/a − b = 10}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is reflexive


Answer the following:

Show that the relation R in the set A = {1, 2, 3, 4, 5} Given by R = {(a, b)/|a − b| is even} is an equivalence relation.


Answer the following:

Show that the following is an equivalence relation

R in A = {x ∈ Z | 0 ≤ x ≤ 12} given by R = {(a, b)/|a − b| is a multiple of 4}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R2 = {(–1, 1)}


In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


Is the given relation a function? Give reasons for your answer.

h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×