Advertisements
Advertisements
Question
In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation
Solution
Z = set of all integers
Relation R is defined on Z by m R n if m – n is divisible by 7.
R = {(m, n), m, n ∈ Z/m – n divisible by 7}
m – n divisible by 7
∴ m – n = 7k where k is an integer.
a) Reflexive:
m – m = 0 = 0 × 7
m – m is divisible by 7
∴ (m, m) ∈ R for all m ∈ Z
Hence R is reflexive.
b) Symmetric:
Let (m, n) ∈ R ⇒ m – n is divisible by 7
m – n = 7k
n – m = – 7k
n – m = (– k)7
∴ n – m is divisible by 7
∴ (n, m) ∈ R.
c) Transitive:
Let (m, n) and (n, r) ∈ R
m – n is divisible by 7
m – n = 7k ......(1)
n – r is divisible by 7
n – r = 7k1 ......(2)
(m – n) + (n – r) = 7k + 7k1
m – r = (k + k1) 7
m – r is divisible by 7.
∴ (m, r) ∈ R
Hence R is transitive.
R is an equivalence relation.
APPEARS IN
RELATED QUESTIONS
The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`
The relation g is defined by g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`
Show that f is a function and g is not a function.
Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(x, y) : x − yis odd}. Write R in roster form.
If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is
If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is
If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is
Express {(x, y) / x2 + y2 = 100, where x, y ∈ W} as a set of ordered pairs
Identify which of if the following relations are reflexive, symmetric, and transitive.
Relation | Reflexive | Symmetric | Transitive |
R = {(a, b) : a, b ∈ Z, a – b is an integer} | |||
R = {(a, b) : a, b ∈ N, a + b is even} | √ | √ | x |
R = {(a, b) : a, b ∈ N, a divides b} | |||
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} | |||
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} | |||
R = {(a, b) : Line a is perpendicular to line b in a plane} | |||
R = {(a, b) : a, b ∈ R, a < b} | |||
R = {(a, b) : a, b ∈ R, a ≤ b3} |
Select the correct answer from given alternative.
Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}
Answer the following:
Show that the following is an equivalence relation
R in A = {x ∈ Z | 0 ≤ x ≤ 12} given by R = {(a, b)/|a − b| is a multiple of 4}
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R2 = {(–1, 1)}
Multiple Choice Question :
Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.
Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`
Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is transitive
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is equivalence
Choose the correct alternative:
Let R be the universal relation on a set X with more than one element. Then R is
If R2 = {(x, y) | x and y are integers and x2 + y2 = 64} is a relation. Then find R2.
Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.