English

If a = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, Then (A − B) × (B − C) is - Mathematics

Advertisements
Advertisements

Question

If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is

Options

  • (a) {(1, 2), (1, 5), (2, 5)}

  • (b) [(1, 4)]

  • (c) (1, 4)

  • (d) none of these

     
MCQ

Solution

(b) [(1, 4)]

A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}
(A − B) = {1}
(B − C) = {4}
So, (A − B) × (B − C)  = {(1,4)}

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations - Exercise 2.5 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 2 Relations
Exercise 2.5 | Q 1 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The given figure shows a relationship between the sets P and Q. Write this relation

  1. in set-builder form.
  2. in roster form.

What is its domain and range?


Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b ∈ A, b is exactly divisible by a}.

  1. Write R in roster form
  2. Find the domain of R
  3. Find the range of R.

Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.


If A = [1, 2, 3], B = [4, 5, 6], which of the following are relations from A to B? Give reasons in support of your answer.

(i) [(1, 6), (3, 4), (5, 2)]
(ii) [(1, 5), (2, 6), (3, 4), (3, 6)]
(iii) [(4, 2), (4, 3), (5, 1)]
(iv) A × B.


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Determine the domain and range of the relation R defined by

(ii) R = {(xx3) : x is a prime number less than 10}

 

Let A = {ab}. List all relations on A and find their number.

 

Let A = [1, 2, 3, ......., 14]. Define a relation on a set A by
R = {(xy) : 3x − y = 0, where xy ∈ A}.
Depict this relationship using an arrow diagram. Write down its domain, co-domain and range.


If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).


If R is a relation defined on the set Z of integers by the rule (xy) ∈ R ⇔ x2 + y2 = 9, then write domain of R.


Let A = [1, 2, 3], B = [1, 3, 5]. If relation R from A to B is given by = {(1, 3), (2, 5), (3, 3)}, Then R−1 is


A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is


R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is


If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is


Let A = {6, 8} and B = {1, 3, 5}
Show that R1 = {(a, b)/a ∈ A, b ∈ B, a − b is an even number} is a null relation. R2 = {(a, b)/a ∈ A, b ∈ B, a + b is odd number} is an universal relation


Write the relation in the Roster Form. State its domain and range

R1 = {(a, a2)/a is prime number less than 15}


Write the relation in the Roster Form. State its domain and range

R6 = {(a, b)/a ∈ N, a < 6 and b = 4}


Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is


Select the correct answer from given alternative

If A = {a, b, c} The total no. of distinct relations in A × A is


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is reflexive


Answer the following:

Show that the following is an equivalence relation

R in A = {x ∈ N/x ≤ 10} given by R = {(a, b)/a = b}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R3 = {(2, –1), (7, 7), (1, 3)}


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | y = x + 3, x, y are natural numbers < 10}


Multiple Choice Question :

Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let P denote the set of all straight lines in a plane. The relation R defined by “lRm if l is perpendicular to m”


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it  is reflexive


Choose the correct alternative:

The relation R defined on a set A = {0, −1, 1, 2} by xRy if |x2 + y2| ≤ 2, then which one of the following is true?


Choose the correct alternative:

The number of relations on a set containing 3 elements is


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


Find the domain and range of the relation R given by R = {(x, y) : y = `x + 6/x`; where x, y ∈ N and x < 6}.


Is the following relation a function? Justify your answer

R2 = {(x, |x |) | x is a real number}


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Is the given relation a function? Give reasons for your answer.

g = `"n", 1/"n" |"n"` is a positive integer


Is the given relation a function? Give reasons for your answer.

t = {(x, 3) | x is a real number


If R = {(x, y): x, y ∈ Z, x2 + 3y2 ≤ 8} is a relation on the set of integers Z, then the domain of R–1 is ______.


Let S = {x ∈ R : x ≥ 0 and `2|sqrt(x) - 3| + sqrt(x)(sqrt(x) - 6) + 6 = 0}`. Then S ______.


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×