Advertisements
Advertisements
Question
Multiple Choice Question :
Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.
Options
mn
nm
2mn – 1
2mn
Solution
Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is 2mn – 1.
APPEARS IN
RELATED QUESTIONS
Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}.
Determine the domain and range of the relation R defined by
(i) R = [(x, x + 5): x ∈ (0, 1, 2, 3, 4, 5)]
Define a relation R on the set N of natural number by R = {(x, y) : y = x + 5, x is a natural number less than 4, x, y ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.
Let R be a relation on N defined by x + 2y = 8. The domain of R is
Write the relation in the Roster Form. State its domain and range
R7 = {(a, b)/a, b ∈ N, a + b = 6}
Select the correct answer from given alternative.
A relation between A and B is
Answer the following:
Show that the relation R in the set A = {1, 2, 3, 4, 5} Given by R = {(a, b)/|a − b| is even} is an equivalence relation.
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive
Is the following relation a function? Justify your answer
R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`
Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.