English

Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}. - Mathematics

Advertisements
Advertisements

Question

Determine the domain and range of the relation R defined by R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}.

Sum

Solution

R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}

∴ R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)}

Domain of R = {0, 1, 2, 3, 4, 5}

Range of R = {5, 6, 7, 8, 9, 10}

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations and Functions - Exercise 2.2 [Page 36]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 2 Relations and Functions
Exercise 2.2 | Q 6 | Page 36

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


The given figure shows a relationship between the sets P and Q. Write this relation

  1. in set-builder form.
  2. in roster form.

What is its domain and range?


Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b ∈ A, b is exactly divisible by a}.

  1. Write R in roster form
  2. Find the domain of R
  3. Find the range of R.

Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.


The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`

The relation g is defined by  g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`

Show that f is a function and g is not a function.


Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?

f is a relation from A to B

Justify your answer in case.


Find the inverse relation R−1 in each of the cases:

(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.

 

Determine the domain and range of the relations:

(i) R = {(ab) : a ∈ N, a < 5, b = 4}


Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R implies (b, a) ∈ R

Justify your answer in case.


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:
(i) (ab) R (ab) for all (ab) ∈ N × N


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N

(iii) (ab) R (cd) and (cd) R (ef) ⇒ (ab) R (ef) for all (ab), (cd), (ef) ∈ N × N

 

If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).


If R = {(xy) : xy ∈ Z, x2 + y2 ≤ 4} is a relation defined on the set Z of integers, then write domain of R.


If R is a relation from set A = (11, 12, 13) to set B = (8, 10, 12) defined by y = x − 3, then write R−1.

 


A relation R is defined from [2, 3, 4, 5] to [3, 6, 7, 10] by : x R y ⇔ x is relatively prime to y. Then, domain of R is


A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?

 

Express {(x, y) / x2 + y2 = 100, where x, y ∈ W} as a set of ordered pairs


Let A = {6, 8} and B = {1, 3, 5}
Show that R1 = {(a, b)/a ∈ A, b ∈ B, a − b is an even number} is a null relation. R2 = {(a, b)/a ∈ A, b ∈ B, a + b is odd number} is an universal relation


Write the relation in the Roster Form. State its domain and range

R3 = {(x, y)/y = 3x, y∈ {3, 6, 9, 12}, x∈ {1, 2, 3}


Select the correct answer from given alternative.

The relation ">" in the set of N (Natural number) is


Select the correct answer from given alternative.

A relation between A and B is


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R3 = {(1, 4), (1, 5), (3, 6), (2, 6), (3, 4)}


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = (a, b)/a − b = 10}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is transitive


Answer the following:

Show that the following is an equivalence relation

R in A = {x ∈ Z | 0 ≤ x ≤ 12} given by R = {(a, b)/|a − b| is a multiple of 4}


Answer the following:

Show that the following is an equivalence relation

R in A = {x ∈ N/x ≤ 10} given by R = {(a, b)/a = b}


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is symmetric


In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation


Choose the correct alternative:

The number of relations on a set containing 3 elements is


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


Is the given relation a function? Give reasons for your answer.

s = {(n, n2) | n is a positive integer}


Is the given relation a function? Give reasons for your answer.

t = {(x, 3) | x is a real number


Let f: R `rightarrow` R be defined by f(x) = `x/(1 + x^2), x ∈ R`. Then the range of f is ______.


Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?

f is a function from A to B

Justify your answer in case.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×