English

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form. - Mathematics

Advertisements
Advertisements

Question

A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.

Sum

Solution 1

Given: A = {1, 2, 3, 5} and B = {4, 6, 9}

R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}

= {(x, y) : y - x = odd; x ∈ A, y ∈ B}

∴ R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}

shaalaa.com

Solution 2

A = [1, 2, 3, 5] and B = [4, 6, 9]
R = {(xy) : the difference between x and y is odd, x ∈ A, y ∈ B}
For x = 1,
4 - 1 = 3 and 6-1 = 5
y = 4, 6
For x = 2,
9 -2 = 7
y = 9
For x = 3,
4 -3 = 1 and 6 -3 = 3
y = 4, 6
For x = 5,
5 - 4=1 and 6 -5 =1
y = 4, 6
Thus, we have:
R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations and Functions - Exercise 2.2 [Page 36]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 2 Relations and Functions
Exercise 2.2 | Q 3 | Page 36
RD Sharma Mathematics [English] Class 11
Chapter 2 Relations
Exercise 2.3 | Q 16 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The given figure shows a relationship between the sets P and Q. Write this relation

  1. in set-builder form.
  2. in roster form.

What is its domain and range?


Find the inverse relation R−1 in each of the cases:

(iii) R is a relation from {11, 12, 13} to (8, 10, 12] defined by y = x − 3.

 

Let A = [1, 2] and B = [3, 4]. Find the total number of relation from A into B.

 

Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

Justify your answer in case.


Define a relation R on the set N of natural number by R = {(xy) : y = x + 5, x is a natural number less than 4, xy ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.


For the relation R1 defined on R by the rule (ab) ∈ R1 ⇔ 1 + ab > 0. Prove that: (ab) ∈ R1 and (b , c) ∈ R1 ⇒ (ac) ∈ R1 is not true for all abc ∈ R.


If n(A) = 3, n(B) = 4, then write n(A × A × B).

 

If A = {1, 2, 4}, B = {2, 4, 5}, C = {2, 5}, then (A − B) × (B − C) is


R is a relation from [11, 12, 13] to [8, 10, 12] defined by y = x − 3. Then, R−1 is


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)


Express {(x, y) / x2 + y2 = 100, where x, y ∈ W} as a set of ordered pairs


Write the relation in the Roster Form. State its domain and range

R6 = {(a, b)/a ∈ N, a < 6 and b = 4}


Write the relation in the Roster Form. State its domain and range

R7 = {(a, b)/a, b ∈ N, a + b = 6}


Select the correct answer from given alternative.

The relation ">" in the set of N (Natural number) is


Select the correct answer from given alternative.

If (x, y) ∈ R × R, then xy = x2 is a relation which is


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R1 = {(1, 4), (1, 5), (1, 6)}


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}


Answer the following:

Show that the following is an equivalence relation

R in A = {x ∈ Z | 0 ≤ x ≤ 12} given by R = {(a, b)/|a − b| is a multiple of 4}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Multiple Choice Question :

Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.


Discuss the following relation for reflexivity, symmetricity and transitivity:

The relation R defined on the set of all positive integers by “mRn if m divides n”


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let P denote the set of all straight lines in a plane. The relation R defined by “lRm if l is perpendicular to m”


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the members of a family. The relation R defined by “aRb if a is not a sister of b”


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it  is reflexive


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is symmetric


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence


Choose the correct alternative:

The number of relations on a set containing 3 elements is


Choose the correct alternative:

The rule f(x) = x2 is a bijection if the domain and the co-domain are given by


Is the following relation a function? Justify your answer

R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`


Is the following relation a function? Justify your answer

R2 = {(x, |x |) | x is a real number}


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.


If R = {(x, y): x, y ∈ Z, x2 + 3y2 ≤ 8} is a relation on the set of integers Z, then the domain of R–1 is ______.


Let N denote the set of all natural numbers. Define two binary relations on N as R1 = {(x, y) ∈ N × N : 2x + y = 10} and R2 = {(x, y) ∈ N × N : x + 2y = 10}. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.