Advertisements
Advertisements
Question
Discuss the following relation for reflexivity, symmetricity and transitivity:
The relation R defined on the set of all positive integers by “mRn if m divides n”
Solution
S = {set of all positive integers}
(a) mRm ⇒ ‘m’ divides’m’ ⇒ reflexive
(b) mRn ⇒ m divides n but
nRm ⇒ n does not divide m
(i.e.,) mRn ≠ nRm
It is not symmetric
(c) mRn ⇒ nRr as n divides r
It is transitive
APPEARS IN
RELATED QUESTIONS
Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.
Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.
Define a relation R on the set N of natural number by R = {(x, y) : y = x + 5, x is a natural number less than 4, x, y ∈ N}. Depict this relationship using (i) roster form (ii) an arrow diagram. Write down the domain and range or R.
If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(x, y) : x, y ∈ A × B and x > y}
Let A = [1, 2, 3, 5], B = [4, 6, 9] and R be a relation from A to B defined by R = {(x, y) : x − yis odd}. Write R in roster form.
If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation on Z, then the domain of R is ______.
Let R be a relation on N defined by x + 2y = 8. The domain of R is
If the set A has p elements, B has q elements, then the number of elements in A × B is
Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)
Write the relation in the Roster Form. State its domain and range
R1 = {(a, a2)/a is prime number less than 15}
Write the relation in the Roster Form. State its domain and range
R7 = {(a, b)/a, b ∈ N, a + b = 6}
Write the relation in the Roster Form. State its domain and range
R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}
Select the correct answer from given alternative
If A = {a, b, c} The total no. of distinct relations in A × A is
Answer the following:
Find R : A → A when A = {1, 2, 3, 4} such that R = {(a, b)/|a − b| ≥ 0}
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R1 = {(2, 1), (7, 1)}
On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is transitive
Is the following relation a function? Justify your answer
R2 = {(x, |x |) | x is a real number}
If R2 = {(x, y) | x and y are integers and x2 + y2 = 64} is a relation. Then find R2.