English

If the Set a Has P Elements, B Has Q Elements, Then the Number of Elements in a × B is (A) P + Q (B) P + Q + 1 (C) Pq (D) P2 - Mathematics

Advertisements
Advertisements

Question

If the set A has p elements, B has q elements, then the number of elements in A × B is

Options

  • (a) p + q

  • (b) p + q + 1

  • (c) pq

  • (d) p2

     
MCQ

Solution

(c) pq

n(A × B) = n(A) × n(B)
              = p × q = pq

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Relations - Exercise 2.5 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 2 Relations
Exercise 2.5 | Q 10 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by {(a, b): a, b ∈ A, b is exactly divisible by a}.

  1. Write R in roster form
  2. Find the domain of R
  3. Find the range of R.

The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`

The relation g is defined by  g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`

Show that f is a function and g is not a function.


Find the inverse relation R−1 in each of the cases:

(ii) R = {(xy), : xy ∈ N, x + 2y = 8}


Let R be a relation from N to N defined by R = {(a, b) : a, b ∈ N and a = b2}. Is the statement true?

(a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R

Justify your answer in case.


Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by {(ab) : ab ∈ A, b is exactly divisible by a}

(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R. 


The adjacent figure shows a relationship between the sets P and Q. Write this relation in (i) set builder form (ii) roster form. What is its domain and range?


If R is a relation on the set A = [1, 2, 3, 4, 5, 6, 7, 8, 9] given by x R y ⇔ y = 3x, then R =


If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation on Z, then the domain of R is ______.


Let R be a relation from a set A to a set B, then


If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is


If R is a relation on a finite set having n elements, then the number of relations on A is


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)


Select the correct answer from given alternative.

Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R2 = {(1, 5), (2, 4), (3, 6)}


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R4 = {(4, 2), (2, 6), (5, 1), (2, 4)}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is reflexive


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R2 = {(–1, 1)}


Let A = {1, 2, 3, 4, …, 45} and R be the relation defined as “is square of ” on A. Write R as a subset of A × A. Also, find the domain and range of R


Let A = {9, 10, 11, 12, 13, 14, 15, 16, 17} and let f : A → N be defined by f(n) = the highest prime factor of n ∈ A. Write f as a set of ordered pairs and find the range of f


Find the domain of the function f(x) = `sqrt(1 + sqrt(1 - sqrt(1 - x^2)`


Discuss the following relation for reflexivity, symmetricity and transitivity:

On the set of natural numbers the relation R defined by “xRy if x + 2y = 1”


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it symmetric


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it transitive


Prove that the relation “friendship” is not an equivalence relation on the set of all people in Chennai


Choose the correct alternative:

The number of relations on a set containing 3 elements is


Choose the correct alternative:

The rule f(x) = x2 is a bijection if the domain and the co-domain are given by


If R3 = {(x, x) | x is a real number} is a relation. Then find domain and range of R3.


Is the given relation a function? Give reasons for your answer.

h = {(4, 6), (3, 9), (– 11, 6), (3, 11)}


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


Is the given relation a function? Give reasons for your answer.

g = `"n", 1/"n" |"n"` is a positive integer


Is the given relation a function? Give reasons for your answer.

s = {(n, n2) | n is a positive integer}


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?

f is a function from A to B

Justify your answer in case.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×