English

Select the correct answer from given alternative. Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct answer from given alternative.

Let R be a relation on the set N be defined by {(x, y)/x, y ∈ N, 2x + y = 41} Then R is ______.

Options

  • reflexive

  • symmetric

  • transitive

  • none of these

MCQ
Fill in the Blanks

Solution

None of these.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Sets and Relations - Miscellaneous Exercise 5.1 [Page 104]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 5 Sets and Relations
Miscellaneous Exercise 5.1 | Q I. (6) | Page 104

RELATED QUESTIONS

Define a relation R on the set N of natural numbers by R = {(x, y): y = x + 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the domain and the range.


A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.


Write the relation R = {(x, x3): x is a prime number less than 10} in roster form.


Determine the domain and range of the relation R defined by

(i) R = [(xx + 5): x ∈ (0, 1, 2, 3, 4, 5)]


Determine the domain and range of the relation R defined by

(ii) R = {(xx3) : x is a prime number less than 10}

 

Let A = {ab}. List all relations on A and find their number.

 

Let A = [1, 2, 3, ......., 14]. Define a relation on a set A by
R = {(xy) : 3x − y = 0, where xy ∈ A}.
Depict this relationship using an arrow diagram. Write down its domain, co-domain and range.


For the relation R1 defined on R by the rule (ab) ∈ R1 ⇔ 1 + ab > 0. Prove that: (ab) ∈ R1 and (b , c) ∈ R1 ⇒ (ac) ∈ R1 is not true for all abc ∈ R.


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:
(i) (ab) R (ab) for all (ab) ∈ N × N


Let R be a relation on N × N defined by
(ab) R (cd) ⇔ a + d = b + c for all (ab), (cd) ∈ N × N
Show that:

(ii) (ab) R (cd) ⇒ (cd) R (ab) for all (ab), (cd) ∈ N × N

 

 


If R is a relation defined on the set Z of integers by the rule (xy) ∈ R ⇔ x2 + y2 = 9, then write domain of R.


Let A = [1, 2, 3], B = [1, 3, 5]. If relation R from A to B is given by = {(1, 3), (2, 5), (3, 3)}, Then R−1 is


If R = {(x, y) : x, y ∈ Z, x2 + y2 ≤ 4} is a relation on Z, then the domain of R is ______.


Let R be a relation on N defined by x + 2y = 8. The domain of R is


If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is


If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P


Express {(x, y) / x2 + y2 = 100, where x, y ∈ W} as a set of ordered pairs


Write the relation in the Roster Form. State its domain and range

R1 = {(a, a2)/a is prime number less than 15}


Write the relation in the Roster Form. State its domain and range

R7 = {(a, b)/a, b ∈ N, a + b = 6}


Identify which of if the following relations are reflexive, symmetric, and transitive.

Relation Reflexive Symmetric Transitive
R = {(a, b) : a, b ∈ Z, a – b is an integer}      
R = {(a, b) : a, b ∈ N, a + b is even} x
R = {(a, b) : a, b ∈ N, a divides b}      
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0}      
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls}      
R = {(a, b) : Line a is perpendicular to line b in a plane}      
R = {(a, b) : a, b ∈ R, a < b}      
R = {(a, b) : a, b ∈ R, a ≤ b3}      

Select the correct answer from given alternative.

A relation between A and B is


Answer the following:

Find R : A → A when A = {1, 2, 3, 4} such that R = (a, b)/a − b = 10}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Represent the given relation by
(a) an arrow diagram
(b) a graph and
(c) a set in roster form, wherever possible

{(x, y) | y = x + 3, x, y are natural numbers < 10}


Discuss the following relation for reflexivity, symmetricity and transitivity:

The relation R defined on the set of all positive integers by “mRn if m divides n”


On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check whether it is equivalence


On the set of natural numbers let R be the relation defined by aRb if a + b ≤ 6. Write down the relation by listing all the pairs. Check whether it is symmetric


In the set Z of integers, define mRn if m − n is divisible by 7. Prove that R is an equivalence relation


Choose the correct alternative:

The relation R defined on a set A = {0, −1, 1, 2} by xRy if |x2 + y2| ≤ 2, then which one of the following is true?


Choose the correct alternative:

Let R be the universal relation on a set X with more than one element. Then R is


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


Is the given relation a function? Give reasons for your answer.

t = {(x, 3) | x is a real number


Let f: R `rightarrow` R be defined by f(x) = `x/(1 + x^2), x ∈ R`. Then the range of f is ______.


A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.


Let N denote the set of all natural numbers. Define two binary relations on N as R1 = {(x, y) ∈ N × N : 2x + y = 10} and R2 = {(x, y) ∈ N × N : x + 2y = 10}. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×