Advertisements
Advertisements
Question
Identify which of if the following relations are reflexive, symmetric, and transitive.
Relation | Reflexive | Symmetric | Transitive |
R = {(a, b) : a, b ∈ Z, a – b is an integer} | |||
R = {(a, b) : a, b ∈ N, a + b is even} | √ | √ | x |
R = {(a, b) : a, b ∈ N, a divides b} | |||
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} | |||
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} | |||
R = {(a, b) : Line a is perpendicular to line b in a plane} | |||
R = {(a, b) : a, b ∈ R, a < b} | |||
R = {(a, b) : a, b ∈ R, a ≤ b3} |
Solution
i. R = {(a, b)/a, b ∈ Z, a - b is an integer}
Let a, b, c ∈ Z
∵ a − a = 0 ∈ Z
∴ aRa ∀ a ∈ Z
∴ R is reflective
Let aRb ∴ a − b is an integer
∴ −(a − b) = b − a is also an integer
∴ bRa
∴ aRb ⇒ bRa ∀ a, b ∈ Z
∴ R is symmetric
Let aRb, bRc
∴ a − b, b − c are integers
∴ (a − b) + (b − c) = a − c is an integer
∴ aRb, bRc ⇒ aRc ∀ a, b, c ∈ Z
∴ R is transitive.
ii. R = {(a, b) / a, b ∈ N, a + b is even}
Let a, b, c ∈ N
a + a = 2a is even
∴ aRa ∀ a ∈ N
R is reflexive
Let aRb . ·. a + b is even
∴ b + a is even
∴ bRa
∴ aRb ⇒ bRa ∀ a, b ∈ N
∴ R is symmetric
Let aRb, bRc
∴ a + b, b + c are even
Let a + b = 2m, b + c = 2n
∴ (a + b) + (b + c) = 2m + 2n
∴ a + c = 2m + 2n -− 2b = 2 (m + n − b) is even
∴ aRc
∴ aRb, bRc ⇒ aRc ∀ a, b, c ∈ N
∴ R is transitive.
iii. R = {(a, b) / a, b ∈ N, a divides b}
∵ a divides a aRa ∀ a ∈ N
∵ R is reflexive
Let a = 2, b = 4
∴ 2 divides 4 so that aRb
But 4 does not divide 2 ∴ `bcancelRa`
∴ aRb `cancel=> bRc`
∴ R is not symmetric
Let aRb, bRc
∴ a divides b, b divides c
∴ b = am, c = bn, m, n ∈ N
∴ c = bn = (am)n = a(mn)
∴ a divides c ∴ aRc
∴ aRb, bRc ⇒ aRc ∀ a, b, c ∈ N
∴ R is transitive.
iv. R = {(a, b) / a, b ∈ N, a2 − 4ab + 3b2 = 0}
aRb if a2 − 4ab + 3b2 = 0
i.e., if (a − b)(a − 3b) = 0
i.e., if a = b or a = 3b
a = a ∴ aRa ∀ a ∈ N
R is reflexive
Let a = 27, b = 9
∴ a = 3b ∴ aRb
`b cancel=a and b cancel= 3a`
`b cancelRa`
`bRb cancel=> bRa`
R is not symmetric
Let a = 27, b = 9, c = 3
a = 3b ∴ aRb
Also, b = 3c ∴ bRc
But `a cancel= c and a cancel= 3c`
`a cancelR c`
`aRb, bRc cancel=> aRc`
R is not transitive.
v. R = {(a, b) / a is a sister of b,
a, b ∈ G = Set of girls}
No girl is her own sister
`a cancelR a` for any a ∈ G
R is not reflexive
Let aRb
a is a sister of b
b is a sister of a
bRa
aRb ⇒ bRa ∀ a, b ∈ G
R is symmetric
Let aRb, bRc
a is a sister of b and b is a sister of c
aRc
aRb, bRc ⇒ aRc ∀ a, b, c ∈ G
R is transitive.
vi. R = {(a, b) / Line a is perpendicular to line b in a plane}
No line is perpendicular to itself
`a cancelR a` for any line
R is not reflexive
Let aRb
a is perpendicular to b
b is perpendicular to a
bRa
aRb ⇒ bRa ∀ a, b
R is symmetric
If a is perpendicular to b and b is perpendicular to c, then a is parallel to c
aRb, bRc `cancel=>` aRc
R is not transitive.
vii. R = {(a, b) / a, be R, a < b}
a ≮ a ∀ a ∈ R
R is not reflexive
Let a = 2, b = 4
a< b
aRb
But b ≮ a
b `cancelR` a
`aRb cancel=> bRa`
R is not symmetric
Let aRb, bRc
a < b, b < c
a < b < c i.e., a < c
aRc
aRb, bRc ⇒ aRc ∀ a, b, c ∈ R
R is transitive.
viii. R = {(a, b) / a, b ∈ R, a ≤ b3 }
Let a = −2
a3 = −8
But −2 > −8
`a cancel≤ a^3` for all a ∈ R
R is not reflexive
Let a = 1, b = 2 so that a3 = 1, b3 = 8
a < b3 ...aRb
But b > a3 `bcancelRa`
aRb ~ bRa
R is not symmetric
Let a = 8, b = 2, c = 1.5
a = b3 ...aRb
c3 = (1.5)3 = 3.375
b < c3
bRc
But a < c3
aRb, bRc `cancel=>` aRc
R is not transitive.
Relation | Reflexive | Symmetric | Transitive |
R = {(a, b) : a, b ∈ Z, a – b is an integer} | √ | √ | √ |
R = {(a, b) : a, b ∈ N, a + b is even} | √ | √ | √ |
R = {(a, b) : a, b ∈ N, a divides b} | √ | x | √ |
R = {(a, b) : a, b ∈ N, a2 – 4ab + 3b2 = 0} | √ | x | x |
R = {(a, b) : a is sister of b and a, b ∈ G = Set of girls} | x | √ | √ |
R = {(a, b) : Line a is perpendicular to line b in a plane} | x | √ | x |
R = {(a, b) : a, b ∈ R, a < b} | x | x | √ |
R = {(a, b) : a, b ∈ R, a ≤ b3} | x | x | √ |
APPEARS IN
RELATED QUESTIONS
Define a relation R on the set N of natural numbers by R = {(x, y): y = x + 5, x is a natural number less than 4; x, y ∈ N}. Depict this relationship using roster form. Write down the domain and the range.
A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.
Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.
Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.
Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?
f is a relation from A to B
Justify your answer in case.
If A = [1, 2, 3], B = [4, 5, 6], which of the following are relations from A to B? Give reasons in support of your answer.
(i) [(1, 6), (3, 4), (5, 2)]
(ii) [(1, 5), (2, 6), (3, 4), (3, 6)]
(iii) [(4, 2), (4, 3), (5, 1)]
(iv) A × B.
Find the inverse relation R−1 in each of the cases:
(i) R = {(1, 2), (1, 3), (2, 3), (3, 2), (5, 6)}
Determine the domain and range of the relation R defined by
(ii) R = {(x, x3) : x is a prime number less than 10}
Determine the domain and range of the relations:
(ii) \[S = \left\{ \left( a, b \right) : b = \left| a - 1 \right|, a \in Z \text{ and} \left| a \right| \leq 3 \right\}\]
Let A = {a, b}. List all relations on A and find their number.
Let R be a relation on N × N defined by
(a, b) R (c, d) ⇔ a + d = b + c for all (a, b), (c, d) ∈ N × N
Show that:
(i) (a, b) R (a, b) for all (a, b) ∈ N × N
If A = {1, 2, 4}, B = {2, 4, 5} and C = {2, 5}, write (A − C) × (B − C).
If A = [1, 2, 3], B = [1, 4, 6, 9] and R is a relation from A to B defined by 'x' is greater than y. The range of R is
If `(x + 1/3, y/3 - 1) = (1/2, 3/2)`, find x and y
Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)
Write the relation in the Roster Form. State its domain and range
R1 = {(a, a2)/a is prime number less than 15}
Write the relation in the Roster Form. State its domain and range
R4 = {(x, y)/y > x + 1, x = 1, 2 and y = 2, 4, 6}
Answer the following:
If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range
R2 = {(1, 5), (2, 4), (3, 6)}
Answer the following:
Determine the domain and range of the following relation.
R = {(a, b)/b = |a – 1|, a ∈ Z, IaI < 3}
Answer the following:
Check if R : Z → Z, R = {(a, b)/2 divides a – b} is equivalence relation.
Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?
R3 = {(2, –1), (7, 7), (1, 3)}
A company has four categories of employees given by Assistants (A), Clerks (C), Managers (M), and an Executive Officer (E). The company provides ₹ 10,000, ₹ 25,000, ₹ 50,000, and ₹ 1,00,000 as salaries to the people who work in the categories A, C, M, and E respectively. If A1, A2, A3, A4, and A5 were Assistants; C1, C2, C3, C4 were Clerks; M1, M2, M3 were managers and E1, E2 was Executive officers and if the relation R is defined by xRy, where x is the salary given to person y, express the relation R through an ordered pair and an arrow diagram
Multiple Choice Question :
If there are 1024 relation from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is
Multiple Choice Question :
Let n(A) = m and n(B) = n then the total number of non-empty relation that can be defined from A to B is ________.
Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence
Let P be the set of all triangles in a plane and R be the relation defined on P as aRb if a is similar to b. Prove that R is an equivalence relation
Choose the correct alternative:
The relation R defined on a set A = {0, −1, 1, 2} by xRy if |x2 + y2| ≤ 2, then which one of the following is true?
Choose the correct alternative:
Let R be the universal relation on a set X with more than one element. Then R is
Choose the correct alternative:
Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is
Find the domain and range of the relation R given by R = {(x, y) : y = `x + 6/x`; where x, y ∈ N and x < 6}.
Let n(A) = m, and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is ______.
A relation on the set A = {x : |x| < 3, x ∈ Z}, where Z is the set of integers is defined by R = {(x, y) : y = |x| ≠ –1}. Then the number of elements in the power set of R is ______.
Let A = {1, 2, 3, 4}, B = {1, 5, 9, 11, 15, 16} and f = {(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)}. Is the following true?
f is a function from A to B
Justify your answer in case.